共查询到20条相似文献,搜索用时 15 毫秒
1.
The b subunit of E. coli F(0)F(1)-ATPase links the peripheral F(1) subunits to the membrane-integral F(0) portion and functions as a "stator", preventing rotation of F(1). The b subunit is present as a dimer in ATP synthase, and residues 62-122 are required to mediate dimerization. To understand how the b subunit dimer is formed, we have studied the structure of the isolated dimerization domain, b(62-122). Analytical ultracentrifugation and solution small-angle X-ray scattering (SAXS) indicate that the b(62-122) dimer is extremely elongated, with a frictional ratio of 1.60, a maximal dimension of 95 A, and a radius of gyration of 27 A, values that are consistent with an alpha-helical coiled-coil structure. The crystal structure of b(62-122) has been solved and refined to 1.55 A. The protein crystallized as an isolated, monomeric alpha helix with a length of 90 A. Combining the crystal structure of monomeric b(62-122) with SAXS data from the dimer in solution, we have constructed a model for the b(62-122) dimer in which the two helices form a coiled coil with a right-handed superhelical twist. Analysis of b sequences from E. coli and other prokaryotes indicates conservation of an undecad repeat, which is characteristic of a right-handed coiled coil and consistent with our structural model. Mutation of residue Arg-83, which interrupts the undecad pattern, to alanine markedly stabilized the dimer, as expected for the proposed two-stranded, right-handed coiled-coil structure. 相似文献
3.
In Escherichia coli F(1)F(0) ATP synthase, the two b subunits dimerize forming the peripheral second stalk linking the membrane F(0) sector to F(1). Previously, we have demonstrated that the enzyme could accommodate relatively large deletions in the b subunits while retaining function (Sorgen, P. L., Caviston, T. L., Perry, R. C., and Cain, B. D. (1998) J. Biol. Chem. 273, 27873-27878). The manipulations of b subunit length have been extended by construction of insertion mutations into the uncF(b) gene adding amino acids to the second stalk. Mutants with insertions of seven amino acids were essentially identical to wild type strains, and mutants with insertions of up to 14 amino acids retained biologically significant levels of activity. Membranes prepared from these strains had readily detectable levels of F(1)F(0)-ATPase activity and proton pumping activity. However, the larger insertions resulted in decreasing levels of activity, and immunoblot analysis indicated that these reductions in activity correlated with reduced levels of b subunit in the membranes. Addition of 18 amino acids was sufficient to result in the loss of F(1)F(0) ATP synthase function. Assuming the predicted alpha-helical structure for this area of the b subunit, the 14-amino acid insertion would result in the addition of enough material to lengthen the b subunit by as much as 20 A. The results of both insertion and deletion experiments support a model in which the second stalk is a flexible feature of the enzyme rather than a rigid rod-like structure. 相似文献
4.
The peripheral stalk of the mitochondrial ATP synthase 总被引:9,自引:0,他引:9
The peripheral stalk of F-ATPases is an essential component of these enzymes. It extends from the membrane distal point of the F1 catalytic domain along the surface of the F1 domain with subunit a in the membrane domain. Then, it reaches down some 45 A to the membrane surface, and traverses the membrane, where it is associated with the a-subunit. Its role is to act as a stator to hold the catalytic alpha3beta3 subcomplex and the a-subunit static relative to the rotary element of the enzyme, which consists of the c-ring in the membrane and the attached central stalk. The central stalk extends up about 45 A from the membrane surface and then penetrates into the alpha3beta3 subcomplex along its central axis. The mitochondrial peripheral stalk is an assembly of single copies of the oligomycin sensitivity conferral protein (the OSCP) and subunits b, d and F6. In the F-ATPase in Escherichia coli, its composition is simpler, and it consists of a single copy of the delta-subunit with two copies of subunit b. In some bacteria and in chloroplasts, the two copies of subunit b are replaced by single copies of the related proteins b and b' (known as subunits I and II in chloroplasts). As summarized in this review, considerable progress has been made towards establishing the structure and biophysical properties of the peripheral stalk in both the mitochondrial and bacterial enzymes. However, key issues are unresolved, and so our understanding of the role of the peripheral stalk and the mechanism of synthesis of ATP are incomplete. 相似文献
6.
The ATP hydrolysis activity and proton pumping of the ATP synthase of Escherichia coli in isolated native membranes have been measured and compared as a function of ADP and Pi concentration. The ATP hydrolysis activity was inhibited by Pi with an half-maximal effect at 140 microM, which increased progressively up in the millimolar range when the ADP concentration was progressively decreased by increasing amounts of an ADP trap. In addition, the relative extent of this inhibition decreased with decreasing ADP. The half-maximal inhibition by ADP was found in the submicromolar range, and the extent of inhibition was enhanced by the presence of Pi. The parallel measurement of ATP hydrolysis activity and proton pumping indicated that, while the rate of ATP hydrolysis was decreased as a function of either ligand, the rate of proton pumping increased. The latter showed a biphasic response to the concentration of Pi, in which an inhibition followed the initial stimulation. Similarly as previously found for the ATP synthase from Rhodobacter caspulatus [P. Turina, D. Giovannini, F. Gubellini, B.A. Melandri, Physiological ligands ADP and Pi modulate the degree of intrinsic coupling in the ATP synthase of the photosynthetic bacterium Rhodobacter capsulatus, Biochemistry 43 (2004) 11126-11134], these data indicate that the E. coli ATP synthase can operate at different degrees of energetic coupling between hydrolysis and proton transport, which are modulated by ADP and Pi. 相似文献
7.
8.
The Escherichia coli open reading frame f413, which has the potential to code for a polypeptide homologous to cardiolipin (CL) synthase, has been cloned. Its polypeptide product has a molecular mass of 48 kDa, is membrane-bound, and catalyzes CL formation but does not hydrolyze CL. A comparison of the sequences predicted for the polypeptides encoded by f413 and cls indicates that the N-terminal residues specified by cls may be unnecessary for CL synthase activity. Construction of a truncated cls gene and characterization of its polypeptide product have confirmed this conclusion. 相似文献
9.
Ishmukhametov RR Pond JB Al-Huqail A Galkin MA Vik SB 《Biochimica et biophysica acta》2008,1777(1):32-38
Interactions between subunit a and oligomeric subunit c are essential for the coupling of proton translocation to rotary motion in the ATP synthase. A pair of previously described mutants, R210Q/Q252R and P204T/R210Q/Q252R [L.P. Hatch, G.B. Cox and S.M. Howitt, The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity, J. Biol. Chem. 270 (1995) 29407-29412] has been constructed and further analyzed. These mutants, in which the essential arginine of subunit a, R210, was switched with a conserved glutamine residue, Q252, are shown here to be capable of both ATP synthesis by oxidative phosphorylation, and ATP-driven proton translocation. In addition, lysine can replace the arginine at position 252 with partial retention of both activities. The pH dependence of ATP-driven proton translocation was determined after purification of mutant enzymes, and reconstitution into liposomes. Proton translocation by the lysine mutant, and to a lesser extent the arginine mutant, dropped off sharply above pH 7.5, consistent with the requirement for a positive charge during function. Finally, the rates of ATP synthesis and of ATP-driven proton translocation were completely inhibited by treatment with DCCD (N,N'-dicyclohexylcarbodiimide), while rates of ATP hydrolysis by the mutants were not significantly affected, indicating that DCCD modification disrupts the F(1)-F(o) interface. The results suggest that minimal requirements for proton translocation by the ATP synthase include a positive charge in subunit a and a weak interface between subunit a and oligomeric subunit c. 相似文献
10.
Prasanna K. Dadi Mubeen Ahmad Zulfiqar Ahmad 《International journal of biological macromolecules》2009,45(1):72-79
We have studied the inhibitory effect of five polyphenols namely, resveratrol, piceatannol, quercetin, quercetrin, and quercetin-3-β-d glucoside on Escherichia coli ATP synthase. Recently published X-ray crystal structures of bovine mitochondrial ATP synthase inhibited by resveratrol, piceatannol, and quercetin, suggest that these compounds bind in a hydrophobic pocket between the γ-subunit C-terminal tip and the hydrophobic inside of the surrounding annulus in a region critical for rotation of the γ-subunit. Herein, we show that resveratrol, piceatannol, quercetin, quercetrin, or quercetin-3-β-d glucoside all inhibit E. coli ATP synthase but to different degrees. Whereas piceatannol inhibited ATPase essentially completely (~0 residual activity), inhibition by other compounds was partial with ~20% residual activity by quercetin, ~50% residual activity by quercetin-3-β-d glucoside, and ~60% residual activity by quercetrin or resveratrol. Piceatannol was the most potent inhibitor (IC50 ~14 μM) followed by quercetin (IC50 ~33 μM), quercetin-3-β-d glucoside (IC50 ~71 μM), resveratrol (IC50 ~94 μM), quercitrin (IC50 ~120 μM). Inhibition was identical in both F1Fo membrane preparations as well as in isolated purified F1. In all cases inhibition was reversible. Interestingly, resveratrol and piceatannol inhibited both ATPase and ATP synthesis whereas quercetin, quercetrin or quercetin-3-β-d glucoside inhibited only ATPase activity and not ATP synthesis. 相似文献
11.
12.
The F1F0 proton-translocating ATPase/synthase is the primary generator of ATP in most organisms growing aerobically. Kinetic assays of ATP synthesis have been conducted using enzymes from mitochondria and chloroplasts. However, limited data on ATP synthesis by the model Escherichia coli enzyme are available, mostly because of the lack of an efficient and reproducible assay. We have developed an optimized assay and have collected synthase kinetic data over a substrate concentration range of 2 orders of magnitude for both ADP and Pi from the synthase enzyme of E. coli. Negative and positive cooperativity of substrate binding and positive catalytic cooperativity were all observed. ATP synthesis displayed biphasic kinetics for ADP indicating that 1) the enzyme is capable of catalyzing efficient ATP synthesis when only two of three catalytic sites are occupied by ADP; and 2) occupation of the third site further activates the rate of catalysis. 相似文献
14.
Structure-function relationships of the Escherichia coli ATP synthase probed by trypsin digestion 总被引:1,自引:0,他引:1
Trypsin cleavage has been used to probe structure-function relationships of the Escherichia coli ATP synthase (ECF1F0). Trypsin cleaved all five subunits, alpha, beta, gamma, delta, and epsilon, in isolated ECF1. Cleavage of the alpha subunit involved the removal of the N-terminal 15 residues, the beta subunit was cleaved near the C-terminus, the gamma subunit was cleaved near Ser202, and the delta and epsilon subunits appeared to be cleaved at several sites to yield small peptide fragments. Trypsin cleavage of ECF1 enhanced the ATPase activity between 6- and 8-fold in different preparations, in a time course that followed the cleavage of the epsilon subunit. This removal of the epsilon subunit increased multisite ATPase activity but not unisite ATPase activity, showing that the inhibitory role of the epsilon subunit is due to an effect on cooperativity. The detergent lauryldimethylamine oxide was found to increase multisite catalysis and also increase unisite catalysis more than 2-fold. Prolonged trypsin cleavage left a highly active ATPase containing only the alpha and beta subunits along with two fragments of the gamma subunit. All of the subunits of ECF1 were cleaved by trypsin in preparations of ECF1F0 at the same sites as in isolated ECF1. Two subunits, the beta and epsilon subunits, were cleaved at the same rate in ECF1F0 as in ECF1 alone. The alpha, gamma, and delta subunits were cleaved significantly more slowly in ECF1F0.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
Membrane topology of ATP synthase from bovine heart mitochondria and Escherichia coli 总被引:1,自引:0,他引:1
C Montecucco F Dabbeni-Sala P Friedl Y M Galante 《European journal of biochemistry》1983,132(1):189-194
The polypeptides exposed to lipids in the membranous F0 sector of the mitochondrial and Escherichia coli ATP synthases were labelled with radioactive photoreactive lipids. Highly resolving gel electrophoretic conditions were used in order to separate all the eighteen components forming the bovine heart mitochondrial enzyme. The hydrophobic labelling was performed on fully active and inhibitor-sensitive ATP synthases. In the mitochondrial enzyme prepared according to Serrano et al. (1976) [J. Biol. Chem. 251, 2453-2461] seven polypeptides of Mr 30500; 11500; 10500; 10000; 9500; 8500 and 4500 were labelled. The major amount of radioactivity was associated with the 30500-Mr component, which is thought to be the adenine nucleotide carrier. In the preparation of Galante et al., (1979) which almost completely lacks this component [J. Biol. Chem. 254, 12372-12378] nine polypeptides of Mr 25000; 21000; 11500; 10500; 10000; 9500; 9200; 8500 and 4500 were labelled. In the ATPase synthase from E. coli the major amount of labelling was associated with subunit b and only a minor portion with subunit c. 相似文献
16.
One remaining challenge to our understanding of the ATP synthase concerns the dimeric coiled-coil stator subunit b of bacterial synthases. The subunit b-dimer has been implicated in important protein interactions that appear necessary for energy conservation and that may be instrumental in energy conservation during rotary catalysis by the synthase. Understanding the stator structure and its interactions with the rest of the enzyme is crucial to the understanding of the overall catalytic mechanism. Controversy exists on whether subunit b adopts a classic left-handed or a presumed right-handed dimeric coiled-coil and whether or not staggered pairing between nonhomologous residues in the homodimer is required for intersubunit packing. In this study we generated molecular models of the Escherichiacoli subunit b-dimer that were based on the well-established heptad-repeat packing exhibited by left-handed, dimeric coiled-coils by employing simulated annealing protocols with structural restraints collected from known structures. In addition, we attempted to create hypothetical right-handed coiled-coil models and left- and right-handed models with staggered packing in the coiled-coil domains. Our analyses suggest that the available structural and biochemical evidence for subunit b can be accommodated by classic left-handed, dimeric coiled-coil quaternary structures. 相似文献
17.
The genes for the eight subunits of the membrane bound ATP synthase of Escherichia coli 总被引:13,自引:0,他引:13
F G Hansen J Nielsen E Riise K von Meyenburg 《Molecular & general genetics : MGG》1981,183(3):463-472
Summary The genes for the eight subunits of the membrane bound ATP synthase of Escherichia coli (Ca++, Mg++ dependent ATPase, EC 3.6.1.3) were mapped through genetic, physical and functional analysis of specialized transducing phages asn (von Meyenburg et al. 1978). The ATP synthase genes, designated atp
1, are located at 83.2 min in a segment of the chromosome between 3.5 and 11.3 kb left (counterclockwise) of the origin of replication oriC. The counterclockwise order of the genes for the eight subunits, the expression of which starts from a control region at 3.5 kb-L, was found to be: a, (c, b, ), , , (, ) which in the notation of Downie et al. (1981) reads atpB (E F H) A G (C D). The analysis was in part based on the isolation of new types of atp (unc, Suc-) mutations. We made use of the fact that specialized transducing phages asn carrying oriC can establish themselves as minichromosomes rendering asnA cells Asn+, and that the resulting Asn+ cells grow slowly if the asn carries part or all of the atp operon. Selecting for fast growing strains mutations were isolated on the asn which either eliminated atp genes or affected their expression (promoter mutations). The relationship between these atp mutations and the cop mutations of Ogura et al. (1980), which also appear to map in front of or within the atp genes, is discussed. 相似文献
18.
The beta subunit of the Escherichia coli ATP synthase exhibits a tight membrane binding property 总被引:1,自引:0,他引:1
We have developed a chromatographic procedure to analyze the association of the subunits of the Escherichia coli F1Fo-ATP synthase with the cytoplasmic membrane. Minicells containing [35S]-labeled ATP synthase subunits are treated with lysozyme, solubilized, and chromatographed on a Sepharose CL-2B column in buffer containing urea and taurodeoxycholate. ATP synthase subunits are resolved into membrane intrinsic and membrane extrinsic subunits. Interestingly, a significant amount (36%) of the F1 subunit beta fractionates with the membrane intrinsic Fo subunits. About half of this amount (19%) of beta is non-specifically bound to the membrane. Interaction of beta with the membrane is not mediated by the amino terminal portion of beta. 相似文献
19.
Weber J 《Biochimica et biophysica acta》2006,1757(9-10):1162-1170
In ATP synthase, proton translocation through the Fo subcomplex and ATP synthesis/hydrolysis in the F1 subcomplex are coupled by subunit rotation. The static, non-rotating portions of F1 and Fo are attached to each other via the peripheral "stator stalk", which has to withstand elastic strain during subunit rotation. In Escherichia coli, the stator stalk consists of subunits b2delta; in other organisms, it has three or four different subunits. Recent advances in this area include affinity measurements between individual components of the stator stalk as well as a detailed analysis of the interaction between subunit delta (or its mitochondrial counterpart, the oligomycin-sensitivity conferring protein, OSCP) and F1. The current status of our knowledge of the structure of the stator stalk and of the interactions between its subunits will be discussed in this review. 相似文献
20.
This paper presents a study of the role of positive charge in the P(i) binding site of Escherichia coli ATP synthase, the enzyme responsible for ATP-driven proton extrusion and ATP synthesis by oxidative phosphorylation. Arginine residues are known to occur with high propensity in P(i) binding sites of proteins generally and in the P(i) binding site of the betaE catalytic site of ATP synthase specifically. Removal of natural betaArg-246 (betaR246A mutant) abrogates P(i) binding; restoration of P(i) binding was achieved by mutagenesis of either residue betaAsn-243 or alphaPhe-291 to Arg. Both residues are located in the P(i) binding site close to betaArg-246 in x-ray structures. Insertion of one extra Arg at beta-243 or alpha-291 in presence of betaArg-246 retained P(i) binding, but insertion of two extra Arg, at both positions simultaneously, abrogated it. Transition state stabilization was measured using phosphate analogs fluoroaluminate and fluoroscandium. Removal of betaArg-246 in betaR246A caused almost complete loss of transition state stabilization, but partial rescue was achieved in betaN243R/betaR246A and alphaF291R/betaR246A. BetaArg-243 or alphaArg-291 in presence of betaArg-246 was less effective; the combination of alphaF291R/betaN243R with natural betaArg-246 was just as detrimental as betaR246A. The data demonstrate that electrostatic interaction is an important component of initial P(i) binding in catalytic site betaE and later at the transition state complex. However, since none of the mutants showed significant function in growth tests, ATP-driven proton pumping, or ATPase activity assays, it is apparent that specific stereochemical interactions of catalytic site Arg residues are paramount. 相似文献