首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
J Botterman  M Zabeau 《Gene》1985,37(1-3):229-239
Escherichia coli strains overproducing the EcoRI restriction endonuclease have been constructed, using lambda pL promoter expression vectors. In a first step we constructed endRI::lacZ gene fusions by fusing the N-terminal part of the endRI gene with a lacZ gene fragment, whereafter the hybrid gene was positioned randomly under the control of the pL promoter to optimize the level of expression. These plasmids direct the synthesis of large amounts of fusion protein approaching 30% of the total cellular protein content. In most cases the overproduced protein forms enzymatically inactive intracellular aggregates. The position of the promoter in front of the hybrid gene had little effect on the level of expression, except in fusions directly affecting the ribosome-binding site (RBS). In a second step, several of these promoter-gene configurations were used to reconstruct the intact endRI gene in appropriate hosts producing EcoRI methylase and cI-coded repressor. The levels of EcoRI endonuclease overproduction were similar to that obtained for the corresponding fusion protein, despite the fourfold difference in protein size. Intracellular precipitation was also observed with the overproduced EcoRI endonuclease.  相似文献   

3.
Four chloramphenicol resistance (Cm) and four tetracycline resistance (Tc) plasmids from Staphylococcus aureus were characterized by restriction endonuclease mapping. All four Tc plasmids had molecular masses of 2.9 megadaltons (Mdaltons) and indistinguishable responses to seven different restriction endonucleases. The four Cm plasmids (pCW6, pCW7, pCW8, and pC221) had molecular masses of 2.6, 2.8, 1.9, and 2.9 Mdaltons, respectively. The four Cm plasmids also differed both in the level of resistance to Cm and in susceptibility to retriction endonucleases. Single restriction endonuclease sites contained within each plasmid included the following: in pCW6 for HindIII, XbaI, HpaII, and BstEII; in pCW7 for HindIII, BstEII, BglII, HaeIII, and HpaII; in pCW8 for HindIII, HaeIII, and HpaII; in pC221 for HindIII, BstEII, and EcoRI. The molecular cloning capabilities of pCW8 and pC221 were determined. Cm and erythromycin resistance (Em) recombinant plasmids pCW12, PCW13, and pCW14 were constructed and used to transform S. aureus 8325-4. A 2.8-Mdalton HindIII fragment from plasmid pI258 was found to encode Em resistance and contain single sites for the retriction endonucleases BglII, PstI, HaeIII, and HpaII. The largest EcoRI fragment (8 Mdaltons) from pI258 contained the HindIII fragment encoding Em resistance intact. Cloning of DNA into the BglII site of pCW14 did not alter Em resistance. Cloning of DNA into the HindIII site of pCW8 and the HindIII and EcoRI sites of pC221 did not disrupt either plasmid replication of Cm resistance.  相似文献   

4.
Versatile mercury-resistant cloning and expression vectors   总被引:8,自引:0,他引:8  
B D Gambill  A O Summers 《Gene》1985,39(2-3):293-297
Cloning vectors have been constructed employing two diverse replicons, IncQ and P15A. Both vectors confer resistance to kanamycin (Km) and mercuric ions (Hg2+). One of these vectors, pDG105, is a broad-host-range, nonconjugative, oligocopy IncQ plasmid, which is capable of transforming Escherichia coli, Acinetobacter calcoaceticus, and Pseudomonas putida. The second vector, pDG106, is a narrow-host-range, multicopy cloning vector compatible with pBR322. Both vectors contain unique cloning sites in the Km-resistance gene for HindIII, SmaI, and XhoI, as well as unique EcoRI and ScaI sites in the mer operon. Cloning into the EcoRI site in the mer operon results in the mercury "supersensitive" phenotype, easily detectable by replica plating. Insertion of the galK gene into the EcoRI site in the mer operon results in Hg2+-inducible galactokinase activity, demonstrating the application of these plasmids as regulated expression vectors.  相似文献   

5.
Versatile low-copy-number plasmid vectors for cloning in Escherichia coli   总被引:106,自引:0,他引:106  
Small low-copy-number plasmid vectors were constructed by in vitro and in vivo recombinant DNA techniques. pLG338 and pLG339 are derived from pSC105, have a copy number of six to eight per chromosome, and carry genes conferring resistance to tetracycline and kanamycin. pLG338 (7.3 kb) has unique restriction endonuclease sites for BamHI, SalI, HincII, SmaI, XhoI, EcoRI and KpnI, the first five lying within a drug resistance gene. pLG339 (6.2 kb) lacks the KpnI site, but has unique SphI and PvuII sites. These versatile vectors should be useful for cloning many genes coding for membrane and regulatory proteins which cannot be cloned into high-copy-number plasmids.  相似文献   

6.
A 4.84-kilobase-pair plasmid was isolated from Proteus vulgaris (ATCC 13315) and cloned into the plasmid vector pBR322. Plasmid pBR322 contains substrate sites for the restriction endonucleases PvuI and PvuII. The recombinant plasmids were resistant to in vitro cleavage by PvuII but not PvuI endonuclease and were found to cause production of PvuII endonuclease or methylase activity or both in Escherichia coli HB101. The approximate endonuclease and methylase gene boundaries were determined through subcloning, Bal 31 resection, insertional inactivation, DNA-dependent translation, and partial DNA sequencing. The two genes are adjacent and appear to be divergently transcribed. Most E. coli strains tested were poorly transformed by the recombinant plasmids, and this was shown by subcloning and insertional inactivation to be due to the PvuII methylase gene. At a low frequency, stable methylase-producing transformants of a methylase-sensitive strain were obtained, and efficiently transformed cell mutants were isolated from them.  相似文献   

7.
8.
We have constructed vectors from bacteriophage lambda and from plasmid pBR322 having a single EcoRI restriction site which is immediately downstream from the lac UV5 promotor. Each vector allows the fusion of a cloned gene to the lac Z gene in a different phase relative to the translation initiation codon of the lac Z gene. These vectors were constructed through modification of the initial EcoRI restriction site by S1 endonuclease treatment and then addition of octadeoxyribonucleotides (EcoRI linkers), which shifted the restriction site by 2 or 4 nucleotides. Used in combination these vectors should allow translation of a cloned gene in any one of the three coding phases. The bacteriophages vectors are certified as B2 (EK2) safety level vectors by the French "recombinaison génétique in vitro" committee (D.G.R.S.T.).  相似文献   

9.
A new plasmid vector, designated pBRS188 has been constructed for cloning of promoter-containing DNA fragments. This plasmid is a derivative of the E. coli drug-resistance plasmid pBR322 in which a small region (13 base pairs long) within the Tc promoter is eliminated. As a result of the alteration pBRS188 has lost the ability to confer Tc resistance to the host strain. Cloning of foreign DNA fragments, carrying promoters for E. coli RNA polymerase, into the unique EcoRI site of pBRS188 allows to isolate the recombinant TcR transformants. Our construction required the use of new techniques, involving partial hydrolysis of DNA fragments by E. coli DNA polymerase I in the presence of one deoxyribonucleosidetriphosphate and by nuclease S1. An important feature of this method is the ability to regenerate restriction endonuclease recognition sites at junctions of DNA fragments.  相似文献   

10.
11.
Two sets of plasmids, each carrying a Saccharomyces cerevisiae gene and a portion or all of the yeast 2-micron circle linked to the Escherichia coli plasmid pBR322, have been constructed. One of these sets contains a BamHI fragment of S. cerevisiae deoxyribonucleic acid that includes the yeast his3 gene, whereas the other set contains a BamHI fragment of S. cerevisiae that includes the yeast leu2 gene. All plasmids transform S. cerevisiae and E. coli with a high frequency, possess unique restriction endonuclease sites, and are retrievable from both host organisms. Plasmids carrying the 2.4-megadalton EcoRI fragment of the 2-micron circle transform yeast with 2- to 10-fold greater frequency than those carrying the 1.5-megadalton EcoRI fragment of the 2-micron circle. Restriction endonuclease analysis of plasmics retrieved from S. cerevisiae transformed with plasmics carrying the 2.4-megadalton EcoRI fragment showed that in 13 of 96 cases the original plasmic has acquired an additional copy of the 2-mcron circle. These altered plasmids appear to have arisen by means of an interplasmid recombination event while in S. cerevisiae. A clone bank of S. cerevisiae genes based upon one of these composite plasmids has been constructed. By using this bank and selecting directly in S. cerevisiae, the ura3, tyr1, and met2 genes have been cloned.  相似文献   

12.
Conditions were determined for the methylation of intact yeast chromosomes by EcoRI, HhaI, and MspI bacterial methylases using an endonuclease protection assay while the chromosomes were embedded in agarose plugs suitable for transverse-field electrophoresis. Parameters were also established for the methylation of human chromosomes by EcoRI methylase. Methylation of embedded chromosomes by EcoRI methylase required prewashes with EDTA. EcoRI, HhaI, and MspI methylases showed optimal activity when nonacetylated bovine serum albumin, high levels of S-adenosylmethionine, and high levels of methylase were used. The use of bacterial methylases for methylation of embedded chromosomes will allow investigators to normalize variations in cellular DNA methylation prior to restriction and create new and rare endonuclease recognition sites which will facilitate the detection of chromosomal alterations and deletions.  相似文献   

13.
14.
15.
E Szomolányi  A Kiss  P Venetianer 《Gene》1980,10(3):219-225
The gene coding for the sequence-specific modification methylase methM . BspI of Bacillus sphaericus R has been cloned in Escherichia coli by means of plasmid pBR322. The selection was based on the expression of the cloned gene which rendered the recombinant plasmid resistant to BspI restriction endonuclease cleavage. The gene is carried by a 9 kb BamHI fragment and by a smaller 2.5 kb EcoRI fragment derived from the BamHI fragment. The Bsp-specific methylase level was found to be higher in the recombinant clones than in the parental strain. The methylase gene is probably located on the Bacillus sphaericus chromosome, and not on a plasmid known to be carried by this strain. The recombinant clones do not exhibit an BspI restriction endonuclease activity.  相似文献   

16.
I Palva 《Gene》1982,19(1):81-87
The gene coding for alpha-amylase from Bacillus amyloliquefaciens was isolated by direct shotgun cloning using B. subtilis as a host. The genome of B. amyloliquefaciens was partially digested with the restriction endonuclease MboI and 2- to 5-kb fragments were isolated and joined to plasmid pUB110. Competent B. subtilis amylase-negative cells were transformed with the hybrid plasmids and kanamycin-resistant transformants were screened for the production of alpha-amylase. One of the transformants producing high amounts of alpha-amylase was characterized further. The alpha-amylase gene was shown to be present in a 2.3-kb insert. The alpha-amylase production of the transformed B. subtilis could be prevented by inserting lambda DNA fragments into unique sites of EcoRI, HindIII and KpnI in the insert. Foreign DNA inserted into a unique ClaI site failed to affect the alpha-amylase production. The amount of alpha-amylase activity produced by this transformed B. subtilis was about 2500-fold higher than that for the wild-type B. subtilis Marburg strain, and about 5 times higher than the activity produced by the donor B. amyloliquefaciens strain. Virtually all of the alpha-amylase was secreted into the culture medium. The secreted alpha-amylase was shown to be indistinguishable from that of B. amyloliquefaciens as based on immunological and biochemical criteria.  相似文献   

17.
Characterization of restriction endonuclease maps of hepatitis B viral DNAs   总被引:2,自引:0,他引:2  
The HBV DNA isolated from Dane particles of 9 patients' plasma was cloned into the EcoRI or BamHI site of the pUC8 plasmids. Two plasmids with full length HBV DNA and four plasmids containing the HBV surface antigen gene were obtained. Based on our cloned HBV DNA and a comparison with 7 complete sequences and 5 restriction endonuclease patterns of HBV DNA published by others, we can recognize common restriction sites shared by different subtypes (adw, adr, ayw, and adyw): (1) a HincII site in the S gene, (2) a BamHI site in the X region, and (3) two BglII sites in the C gene. In addition adw has specific sites for HincII, BamHI, and PstI in the pre-S region. A unique XhoI site is present in the pre-S region in all subtypes except for adw.  相似文献   

18.
We have developed pBR328-derived vectors which allow highly efficient positive selection of recombinant plasmids. The system is based on the rglB-coded restriction activity of Escherichia coli K-12 directed against 5-methylcytosine (5mC)-containing DNA. The vectors code for cytosine-specific, temperature-sensitive DNA methyltransferases (ts-Mtases), whose specificity elicits RglB restriction. 5mC-free vector DNA - a prerequisite to allow establishment of such plasmids in cells expressing the RglB nuclease activity - can be prepared from cultures grown at 42 degrees C. At 30 degrees C the vector plasmids are vulnerable to RglB restriction due to the expression of suicidal Mtase activity. Cloning a DNA fragment into the ts-Mtase-coding gene disrupts the lethal methylation and thus permits selection of such recombinant plasmids at 30 degrees C. The standard vector used, pBN73, contains unique recognition sites for nine restriction enzymes within the ts-Mtase-coding gene, which can be used independently or in combination for the construction of recombinant plasmids selectable by the rglB-coded activity. Plasmid pBN74, which carries the determinants for both the ts-Mtase and the RglB nuclease, contains seven unique sites within the ts-Mtase-coding gene. While selection of recombinant plasmids derived from pBN73 obligatorily requires the employment of rglB+ strains, selection of pBN74 derivatives can be performed independent of the E. coli-host genotype. It remains to be elucidated whether positive selection of pBN74-derived recombinant plasmids can also be achieved in hosts other than E. coli. Plasmids pBN73, pBN74 and the recombinants are structurally stable. Generally applicable procedures, as developed during the establishment of this vector system, are described; they allow the isolation of ts-Mtases and facilitate the cloning of genes coding for nucleases directed against 5mC-containing DNA.  相似文献   

19.
X Soberon  L Covarrubias  F Bolivar 《Gene》1980,9(3-4):287-305
In vitro recombinant DNA experiments involving restriction endonuclease fragments derived from the plasmids pBR322 and pBR325 resulted in the construction of two new cloning vehicles. One of these plasmids, designated pBR327, was obtained after an EcoRII partial digestion of pBR322. The plasmid pBR327 confers resistance to tetracycline and ampicillin, contains 3273 base pairs (bp) and therefore is 1089 bp smaller than pBR322. The other newly constructed vector, which has been designated pBR328, confers resistance to chloramphenicol as well as the two former antibiotics. This plasmid contains unique HindIII, BamHI and SalI sites in the tetracycline resistance gene, unique PvuI and PstI sites in the ampicillin resistance gene and unique EcoRI, PvuII and BalI sites in the chloramphenicol resistance gene. The pBR328 plasmid contains approx. 4900 bp.  相似文献   

20.
DNA restriction-modification systems mediate plasmid maintenance.   总被引:8,自引:3,他引:5       下载免费PDF全文
Two plasmid-carried restriction-modification (R-M) systems, EcoRI (from pMB1 of Escherichia coli) and Bsp6I (from pXH13 of Bacillus sp. strain RFL6), enhance plasmid segregational stability in E. coli and Bacillus subtilis, respectively. Inactivation of the endonuclease or the presence of the methylase in trans abolish the stabilizing activity of the R-M systems. We propose that R-M systems mediate plasmid segregational stability by postsegregational killing of plasmid-free cells. Plasmid-encoded methyltransferase modifies host DNA and thus prevents its digestion by the restriction endonuclease. Plasmid loss entails degradation and/or dilution of the methylase during cell growth and appearance of unmethylated sites in the chromosome. Double-strand breaks, introduced at these sites by the endonuclease, eventually cause the death of the plasmid-free cells. Contribution to plasmid stability is a previously unrecognized biological role of the R-M systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号