首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J C Martinou  I Martinou  A C Kato 《Neuron》1992,8(4):737-744
We present evidence that the cholinergic differentiation factor (CDF), originally purified from cardiac and skeletal muscle cell-conditioned medium and found to be identical to leukemia inhibitory factor (LIF), promotes survival of embryonic day 14 rat motoneurons in vitro. These neurons were retrogradely labeled with the fluorescent tracer Dil and enriched on a density gradient or purified to homogeneity by fluorescence-activated cell sorting. Subnanomolar concentrations of CDF/LIF supported the survival of 85% of the motoneurons that would have died between days 1 and 4 of culture. The enhanced survival was accompanied by a 4-fold increase in choline acetyltransferase (ChAT) activity per culture. CDF/LIF also increased ChAT activity in dorsal spinal cord cultures, but had no detectable effect on ChAT levels in septal or striatal neuronal cultures. For comparison, other neurotrophic molecules were tested on motoneuron cultures. Ciliary neurotrophic factor had effects on motoneuron survival similar to those of CDF/LIF, whereas basic fibroblast growth factor was somewhat less effective. Nerve growth factor had no effect on the survival of rat motoneurons.  相似文献   

2.
Extracts of rat skeletal muscle contain substances that enhance the development of choline acetyltransferase (ChAT) in the cholinergic human neuroblastoma cell line LA-N-2. The ChAT enhancing activity in muscle extract was purified to homogeneity by preparative gel electrophoresis and reverse-phase HPLC. The active factor is biochemically and immunologically identical to ChAT development factor, (CDF), the skeletal muscle factor that enhances ChAT activity in enriched cultures of embryonic rat motoneurons and rescues motoneurons from naturally occurring cell death in vivo. CDF increases the specific ChAT activity of LA-N-2 cells fivefold after 6 days in culture, but does not affect their growth or metabolic activity. Basic fibroblast growth factor also increases ChAT activity in LA-N-2 cells and its effect is additive with that of CDF. In contrast, neither insulin-like growth factor-1, epidermal growth factor, nor nerve growth factor affected the ChAT activity of LA-N-2 cells. Our study demonstrates for the first time that CDF can directly affect the development of neuronal properties in a homogeneous population of cells, and that the effects of CDF are separate from those of other types of trophic factors.  相似文献   

3.
Extracts of skeletal muscle contain chromatographically distinct molecules that enhance the cholinergic development of cultured embryonic rat spinal cord neurons. We have recently purified a 20-22 kilodalton anionic polypeptide choline acetyltransferase (ChAT) development factor (CDF) from rat skeletal muscle extracts that stimulates the development of ChAT activity in rat spinal cord cultures. The maximum increase in the level of ChAT activity achieved by this factor, however, is less than that achieved by the addition of the crude extract. We now show that muscle extract also contains mitogenic activity that is immunologically related to basic fibroblast growth factor (bFGF) and also that recombinant bFGF stimulates ChAT development in rat spinal cord cultures. bFGF, however, differs from CDF in its physiochemical, chromatographic, and immunological properties and by its action on nonneuronal cells. Individually, CDF and bFGF each enhance the level of ChAT activity in rat spinal cord cultures two- to threefold after 2 days of treatment. However, their combined actions result in a five- to sixfold enhancement of ChAT activity, suggesting that they are affecting cholinergic development through different means. The demonstration that extracts of rat skeletal muscle contain two biochemically and immunologically distinct polypeptides, with additive effects on cultured embryonic spinal cord neurons, provides additional evidence for the involvement of multiple target-derived neurotrophic factors in the regulation of cholinergic development.  相似文献   

4.
A series of in vivo studies have been carried out using the chick embryo to address several critical questions concerning the biological, and to a lesser extent, the biochemical characteristics of a putative avian muscle-derived trophic agent that promotes motoneuron survival in vivo. A partially purified fraction of muscle extract was shown to be heat and trypsin sensitive and rescued motoneurons from naturally occurring cell death in a dose-dependent fashion. Muscle extract had no effect on mitotic activity in the spinal cord and did not alter cell number when administered either before or after the normal cell death period. The survival promoting activity in the muscle extract appears to be developmentally regulated. Treatment with muscle extract during the cell death period did not permanently rescue motoneurons. The motoneuron survival-promoting activity found in skeletal muscle was not present in extracts from a variety of other tissues, including liver, kidney, lung, heart, and smooth muscle. Survival activity was also found in extracts from fetal mouse, rat, and human skeletal muscle. Conditioned medium derived from avian myotube cultures also prevented motoneuron death when administered in vivo to chick embryos. Treatment of embryos in ovo with muscle extract had no effect on several properties of developing muscles. With the exception of cranial motoneurons, treatment with muscle extract did not promote the survival of several other populations of neurons in the central and peripheral nervous system that also exhibit naturally occurring cell death. Initial biochemical characterization suggests that the activity in skeletal muscle is an acidic protein between 10 and 30 kD. Examination of a number of previously characterized growth and trophic agents in our in vivo assay have identified several molecules that promote motoneuron survival to one degree or another. These include S100β, brain-derived neurotrophic factor (BDNF), neurotrophin 4/5 (NT-4/5), ciliary neurotrophic factor (CNTF), transforming growth factor β (TGFβ), platelet-derived growth factor-AB (PDGF-AB), leukemia inhibitory factor (CDF/LIF), and insulin-like growth factors I and II (IGF). By contrast, the following agents were ineffective: nerve growth factor (NGF), neurotrophin-3 (NT3), epidermal growth factor (EGF), acidic and basic fibroblast growth factors (aFGF, bFGF), and the heparin-binding growth-associated molecule (HB-GAM). Of those agents that were effective, CDF/LIF, IGF-1 and -2, BDNF, and TGF are reported to be expressed in developing or adult muscle. Studies are underway to determine whether the survival activity found in avian muscle extract can be accounted for by one or more of these growth factors. Of all the tissue extracts and purified proteins tested here, only the neurotrophins—NGF, NT-3, and BDNF (but not NT-4/5)—rescured sensory neurons from naturally occurring cell death. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
The cholinergic differentiation factor (CDF) in heart cells is identical to leukemia inhibitory factor (LIF). Recombinant CDF/LIF was shown to alter dramatically neurotransmitter production as well as the levels of several neuropeptides in cultured rat sympathetic neurons. Here it is shown that these changes are likely to be caused by alterations in the mRNA for these proteins and peptides. Growth in 1 nM recombinant CDF/LIF induces mRNA for acetyl CoA: choline-O-acetyltransferase [EC 2.3.1.6; choline acetyltransferase (ChAT)], somatostatin (SOM), substance P, and vasoactive intestinal polypeptide while lowering mRNA levels of tyrosine hydroxylase (EC 1.14.16.2) and neuropeptide Y (NPY). In addition, the sizes of the mRNAs for ChAT, SOM, and NPY are larger after recombinant CDF/LIF treatment.  相似文献   

6.
We examined the effects of ciliary neurotrophic factor (CNTF) and depolarization, two environmental signals that influence noradrenergic and cholinergic function, on neuropeptide expression by cultured sympathetic neurons. Sciatic nerve extract, a rich source of CNTF, increased levels of vasoactive intestinal peptide (VIP), substance P, and somatostatin severalfold while significantly reducing levels of neuropeptide Y (NPY). No change was observed in the levels of leu-enkephalin (L-Enk). These effects were abolished by immunoprecipitation of CNTF-like molecules from the extract with an antiserum raised against recombinant CNTF, and recombinant CNTF caused changes in neuropeptide levels similar to those of sciatic nerve extract. Alterations in neuropeptide levels by CNTF were dose-dependent, with maximal induction at concentrations of 5-25 ng/ml. Peptide levels were altered after only 3 days of CNTF exposure and continued to change for 14 days. Depolarization of sympathetic neuron cultures with elevated potassium elicited a different spectrum of effects; it increased VIP and NPY content but did not alter substance P, somatostatin, or L-Enk. Depolarization is known to block cholinergic induction in response to heart cell conditioned medium and we found that it blocked the induction of choline acetyltransferase (ChAT) and peptides by recombinant cholinergic differentiation factor/leukemia inhibitory factor (CDF/LIF). In contrast, it did not antagonize the effects of CNTF on either ChAT activity or neuropeptide expression. Thus, while CNTF has effects on neurotransmitter properties similar to those previously reported for CDF/LIF, the actions of these two factors are differentially modulated by depolarization, suggesting that the mechanisms of cholinergic and neuropeptide induction for the two factors differ. In addition, in contrast to CDF/LIF, CNTF did not alter levels of ChAT, VIP, substance P, or somatostatin in cultured dorsal root ganglion neurons. These observations indicate that CNTF and depolarization affect the expression of neuropeptides by sympathetic neurons and provide evidence for an overlapping yet distinct spectrum of actions of the two neuronal differentiation factors, CNTF and CDF/LIF.  相似文献   

7.
Sweat glands in rat footpads contain a neuronal differentiation activity that switches the phenotype of sympathetic neurons from noradrenergic to cholinergic during normal development in vivo. Extracts of developing and adult sweat glands induce changes in neurotransmitter properties in cultured sympathetic neurons that mimic those observed in vivo. We have characterized further the factors present in the extract and compared their properties to those of known cholinergic factors. When assayed on cultured rat sympathetic neurons, the major activities in footpad extracts from postnatal day 21 rat pups that induce choline acetyltransferase (ChAT) and vasoactive intestinal peptide (VIP) and reduce catecholamines and neuropeptide Y (NPY) are associated with a soluble protein of 22-26 x 10(3) M(r) and a pI of 5.0. These properties are similar to those of ciliary neurotrophic factor (CNTF). Moreover, the purified fraction from footpads has ciliary neurotrophic activity. Antibodies to CNTF that immunoprecipitate all differentiation activity from sciatic nerve extracts, a rich source of CNTF, immunoprecipitate 80% of the cholinergic activity in the footpad extracts, 50% of the VIP and 20% of the NPY activities. Neither CNTF protein nor CNTF mRNA, however, can be detected in immunoblot and northern analysis of footpads even though both CNTF protein and mRNA are evident in sciatic nerve. CNTF-immunoreactivity is associated with a sparse plexus of sensory fibers in the footpad but not with sweat glands or the Schwann cells associated with them. In addition, in situ hybridization studies with oligonucleotide probes failed to reveal CNTF mRNA in sweat glands. Comparison of the sweat gland differentiation activity with the cholinergic differentiation factor from heart cells (CDF; also known as leukemia inhibitory factor or LIF) suggests that most of the cholinergic activity in foot pads is biochemically distinct from CDF/LIF. Further, antibodies that block the activity of CDF/LIF purified from heart-cell-conditioned medium do not block the ChAT-inducing activity present in footpad extracts of postnatal day 8 animals. A differentiation factor isolated from skeletal muscle did not induce cholinergic properties in sympathetic neuron cultures and therefore is unlikely to be the cholinergic differentiation factor produced by sweat glands. Taken together, our data suggest that there are at least two differentiation molecules present in the extracts and that the major cholinergic activity obtained from footpads is related to, but distinct from, CNTF. The second factor remains to be characterized. In addition, CNTF associated with sensory fibers may make a minor contribution to the cholinergic inducing activity present in the extract.  相似文献   

8.
9.
Both nerve growth factor (NGF) and pituitary adenylate cyclase activating polypeptide (PACAP) have neurotrophic effects on basal forebrain cholinergic neurons. They promote differentiation, maturation, and survival of these cholinergic neurons in vivo and in vitro. Here we report on the cooperative effects of NGF and PACAP on postnatal, but not embryonic, cholinergic neurons cultured from rat basal forebrain. Combined treatment with NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4), and PACAP induced an additive increase in choline acetyltransferase (ChAT) activity. There were no cooperative effects on the number of cholinergic neurons, suggesting that ChAT mRNA expression had been induced in each cholinergic neuron. Further analysis revealed that NGF and PACAP led to complementary induction of different ChAT mRNA species, thus enhancing total ChAT mRNA expression. These results explain the cooperative neurotrophic action of NGF and PACAP on postnatal cholinergic neurons.  相似文献   

10.
Periosteum, the connective tissue surrounding bone, alters the transmitter properties of its sympathetic innervation during development in vivo and after transplantation. Initial noradrenergic properties are downregulated and the innervation acquires cholinergic and peptidergic properties. To elucidate the cellular mechanisms responsible, sympathetic neurons were cultured with primary periosteal cells or osteoblast cell lines. Both primary cells and an immature osteoblast cell line, MC3T3-E1, induced choline acetyltransferase (ChAT) activity. In contrast, lines representing marrow stromal cells or mature osteoblasts did not increase ChAT. Growth of periosteal cells with sympathetic neurons in transwell cultures that prevent direct contact between the neurons and periosteal cells or addition of periosteal cell-conditioned medium to neuron cultures induced ChAT, indicating that periosteal cells release a soluble cholinergic inducing factor. Antibodies against LIFRbeta, a receptor subunit shared by neuropoietic cytokines, prevented ChAT induction in periosteal cell/neuron cocultures, suggesting that a member of this family is responsible. ChAT activity was increased in neurons grown with periosteal cells or conditioned medium from mice lacking either leukemia inhibitory factor (LIF) or LIF and ciliary neurotrophic factor (CNTF). These results provide evidence that periosteal cells influence sympathetic neuron phenotype by releasing a soluble cholinergic factor that is neither LIF nor CNTF but signals via LIFRbeta.  相似文献   

11.
Developmental motoneuron cell death and neurotrophic factors   总被引:5,自引:0,他引:5  
During the development of higher vertebrates, motoneurons are generated in excess. In the lumbar spinal cord of the developing rat, about 6000 motoneurons are present at embryonic day 14. These neurons grow out axons which make contact with their target tissue, the skeletal muscle, and about 50% of the motoneurons are lost during a critical period from embryonic day 14 until postnatal day 3. This process, which is called physiological motoneuron cell death, has been the focus of research aiming to identify neurotrophic factors which regulate motoneuron survival during this developmental period. Motoneuron cell death can also be observed in vitro when the motoneurons are isolated from the embryonic avian or rodent spinal cord. These isolated motoneurons and other types of primary neurons have been a useful tool for studying basic mechanisms underlying neuronal degeneration during development and under pathophysiological conditions in neurodegenerative disorders. Accumulating evidence from such studies suggests that some specific requirements of motoneurons for survival and proper function may change during development. The focus of this review is a synopsis of recent data on such specific mechanisms.  相似文献   

12.
Although it is well known that motor neuron survival following axotomy is enhanced with maturation, the ability of surviving neurons to express the cholinergic enzyme choline acetyltransferase (ChAT) following axotomy has not been closely examined. Moreover, the utility of the facial nucleus in studies of motoneuron response to injury and to trophic factors, coupled with the increasing importance of the mouse in gene targeting, compelled us to investigate the age dependence of neuronal survival and ChAT expression in the mouse facial nucleus following axotomy. We cut the facial nerve at postnatal day (P)4, 7, 14, 21, and 28 or in the adult and used Nissl staining and ChAT immunocytochemistry to quantitate survival and ChAT expression, respectively, following 1, 2, or 3 weeks' survival at each age. We confirm in this model that the rate and extent of motor neuron death following axotomy is reduced with increasing maturity. The surviving neurons maintain a high ChAT content through P21; however, axotomy from P28 through adulthood results in a striking reduction in ChAT immunoreactivity. That is, although axotomy at P21 results in 61% motor neuron survival, with virtually all of the surviving neurons being ChAT positive, axotomy in the adult results in 72% survival but only 9% of the neurons are ChAT positive. Thus, surviving motor neurons in the adult animals are only weakly cholinergic. These results indicate that a change in the regulation of ChAT expression occurs following P21 so that cell survival and enzyme levels are uncoupled. We suggest that the putative factor or factors that enhances motor neuron survival in maturity is not capable of maintaining ChAT expression. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Environmental cues play an important role in determining the transmitter phenotype of developing sympathetic neurons. Several factors have been described which can induce cholinergic function in cultured sympathetic neurons. We have compared certain biological and immunological properties of three of them, cholinergic differentiation factor (CDF), membrane-associated neurotransmitter-stimulating factor (MANS), and ciliary neurotrophic factor (CNTF), to determine whether they are different. As previously reported, all three increased acetylcholine synthesis in cultured sympathetic neurons. In addition, MANS as well as CNTF and CDF decreased catecholamine synthesis. CNTF and MANS, but not CDF, promoted the survival of embryonic chick ciliary neurons. Affinity-purified antibodies raised against a synthetic peptide corresponding to the N-terminal sequence of CDF immunoprecipitated CDF, but not MANS or CNTF. These results indicate that although CDF, MANS, and CNTF have similar effects on transmitter synthesis by cultured sympathetic neurons, CDF lacks the ciliary neurotrophic activity of MANS and CNTF. Further, CDF possesses an N-terminal epitope which is absent from both MANS and CNTF. Thus, CDF is distinct from MANS and CNTF, and at least two factors exist which can alter the transmitter phenotype of sympathetic neurons in vitro.  相似文献   

14.
Choline acetyltransferase (ChAT, EC 2.3.1.6) synthesizes a neurotransmitter, acetylcholine in cholinergic neurons. ChAT is considered to be the most specific marker for cholinergic neurons. To obtain a better marker of the neurons, as the first step, we isolated a partial ChAT cDNA from the goldfish (Carassius auratus) brain by RT-PCR methods. The partial cDNA of the goldfish ChAT was composed of 718 nucleotides. The amino acid sequence of the goldfish ChAT is approximately 70% identical to those of mammalian and chicken ChAT. Northern blot analysis demonstrated that ChAT mRNA was expressed in the brain and the spinal cord of the goldfish, and much abundant in the spinal cord. In the spinal cord of the goldfish, ChAT-positive neurons were detected mainly in the ventral horn by in situ hybridization. In addition, fluorescence in situ hybridization combined with a retrograde labeling by using True Blue demonstrated ChAT mRNA positive neurons were exactly motoneurons. In the cord, putative presynaptic sympathetic neurons were also labeled.  相似文献   

15.
Abstract: The organic molecule K-252a promoted cell survival, neurite outgrowth, and increased choline acetyltransferase (ChAT) activity in rat embryonic striatal and basal forebrain cultures in a concentration-dependent manner. A two- to threefold increase in survival was observed at 75 n M K-252a in both systems. A single application of K-252a at culture initiation prevented substantial (>60%) cell death that otherwise occurred after 4 days in striatal or basal forebrain cultures. A 5-h exposure of striatal or basal forebrain cells to K-252a, followed by its removal, resulted in survival equivalent to that observed in cultures continually maintained in its presence. This is in contrast to results found with a 5-h exposure of basal forebrain cultures to nerve growth factor (NGF). Acute exposure of basal forebrain cultures to K-252a, but not to NGF, increased ChAT activity, indicating that NGF was required the entire culture period for maximum activity. Striatal cholinergic and GABAergic neurons were among the neurons rescued by K-252a. Of the protein growth factors tested in striatal cultures (ciliary neurotrophic factor, neurotrophin-3, NGF, brain-derived neurotrophic factor, interleukin-2, basic fibroblast growth factor), only brain-derived neurotrophic factor promoted survival. The enhancement of survival and ChAT activity of basal forebrain and striatal neurons by K-252a defines additional populations of neurons in which survival and/or differentiation is regulated by a K-252a-responsive mechanism. The above results expand the potential therapeutic targets for these molecules for the treatment of neurodegenerative diseases.  相似文献   

16.
M S Rao  S C Landis 《Neuron》1990,5(6):899-910
The sympathetic innervation of rat sweat glands undergoes a target-induced switch from a noradrenergic to a cholinergic and peptidergic phenotype during development. Treatment of cultured sympathetic neurons with sweat gland extracts mimics many of the changes seen in vivo. Extracts induce choline acetyltransferase activity and vasoactive intestinal peptide expression in the neurons in a dose-dependent fashion while reducing catecholaminergic properties and neuropeptide Y. The cholinergic differentiation activity appears in developing glands of postnatal day 5 rats and is maintained in adult glands. It is a heat-labile, trypsin-sensitive, acidic protein that does not bind to heparin-agarose. Immunoprecipitation experiments with an antiserum directed against an N-terminal peptide of a cholinergic differentiation factor (CDF/LIF) from heart cells suggest that the sweat gland differentiation factor is not CDF/LIF. The sweat gland activity is a likely candidate for mediating the target-directed change in sympathetic neurotransmitter function observed in vivo.  相似文献   

17.
The results of our in situ hybridization experiments demonstrate that sensory neurons, sympathetic neurons, and motoneurons express brain-derived neurotrophic factor and/or neurotrophin-3 mRNAs during development in mouse. In accordance with previous data, we also find neurotrophins in the targets of sensory neurons (skin) and motoneurons (muscle) and the neurotrophin receptors p75, trkA, and trkB in sensory and sympathetic ganglia. These results suggest that neurotrophins have roles other than being target-derived factors that support neuron survival during developmental cell death (neurotrophic hypothesis), but may be transported in an orthograde fashion in neurons and released from axon terminals. We discuss several novel roles for neurotrophins, including autocrine/paracrine regulation of neuron survival, regulation of Schwann cell activity, and neuron to target signaling.  相似文献   

18.
Members of the ciliary neurotrophic factor (CNTF)/leukemia inhibitory factor (LIF)/cardiotrophin gene family are potent survival factors for embryonic and lesioned motoneurons. These factors act via receptor complexes involving gp130 and LIFR-beta and ligand binding leads to activation of various signaling pathways, including phosphorylation of Stat3. The role of Stat3 in neuronal survival was investigated in mice by Cre-mediated gene ablation in motoneurons. Cre is expressed under the neurofilament light chain (NF-L) promoter, starting around E12 when these neurons become dependent on neurotrophic support. Loss of motoneurons during the embryonic period of naturally occurring cell death is not enhanced in NF-L-Cre; Stat3(flox/KO) mice although motoneurons isolated from these mice need higher concentrations of CNTF for maximal survival in culture. In contrast, motoneuron survival is significantly reduced after facial nerve lesion in the adult. These neurons, however, can be rescued by the addition of neurotrophic factors, including CNTF. Stat3 is essential for upregulation of Reg-2 and Bcl-xl expression in lesioned motoneurons. Our data show that Stat3 activation plays an essential role for motoneuron survival after nerve lesion in postnatal life but not during embryonic development, indicating that signaling requirements for motoneuron survival change during maturation.  相似文献   

19.
Ciliary neurotrophic factor (CNTF) influences the levels of choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH) in cultures of dissociated sympathetic neurons from newborn rats. In the presence of CNTF both the total and specific activity of ChAT was increased 7 d after culture by 15- and 18-fold, respectively, as compared to cultures kept in the absence of CNTF. Between 3 and 21 d in culture in the presence of CNTF the total ChAT activity increased by a factor of greater than 100. Immunotitration demonstrated that the elevated ChAT levels were due to an increased number of enzyme molecules. In contrast to the increase in ChAT levels, the total and specific activity levels of TH were decreased by 42 and 36%, respectively, after 7 d in culture. Half-maximal effects for both ChAT increase and TH decrease were obtained at CNTF concentrations of approximately 0.6 ng and maximal levels were reached at 1 ng of CNTF per milliliter of medium. The effect of CNTF on TH and ChAT levels were seen in serum-containing medium as well as in serum-free medium. CNTF was shown to have only a small effect on the long-term survival of rat sympathetic neurons. We therefore concluded that the effects of CNTF on ChAT and TH are not due to selective survival of cells that acquire cholinergic traits in vitro, but are rather due to the induction of cholinergic differentiation of noradrenergic sympathetic neurons.  相似文献   

20.
Forebrain cholinergic neurons have been shown to respond in vivo to administration of nerve growth factor (NGF) with a prominent and selective increase of choline acetyltransferase (ChAT) activity. This has suggested that NGF can act as a trophic factor for these neurons. To test this hypothesis directly, anti-NGF antibodies (and their Fab fragments) were intracerebroventricularly injected into neonatal rats to neutralize endogenously occurring NGF. The anti-NGF antibody administration produced a decrease of ChAT activity in the hippocampus, septal area, cortex, and striatum of rat pups. This finding was substantiated by a concomitant decrease of immunopositive staining for ChAT in the septal area. These effects indicate that the occurrence of endogenous NGF in the CNS is physiologically relevant for regulating the function of forebrain cholinergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号