首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Normal dentin mineralization requires two highly acidic proteins, dentin sialoprotein (DSP) and phosphophoryn (PP). DSP and PP are synthesized as part of a single secreted precursor, DSP-PP, which is conserved in marsupial and placental mammals. Using a baculovirus expression system, we previously found that DSP-PP is accurately cleaved into DSP and PP after secretion into medium by an endogenous, secreted, zinc-dependent Sf9 cell activity. Here we report that mutation of conserved residues near and distant from the G447↓D448 cleavage site in DSP-PP240 had dramatic effects on cleavage efficiency by the endogenous Sf9 cell processing enzyme. We found that: 1) mutation of residues flanking the cleavage site from P4 to P4′ blocked, impaired, or enhanced DSP-PP240 cleavage; 2) certain conserved amino acids distant from the cleavage site were important for precursor cleavage; 3) modification of the C terminus by appending a C-terminal tag altered the pattern of processing; and 4) mutations in DSP-PP240 had similar effects on cleavage by recombinant human BMP1, a candidate physiological processing enzyme, as was seen with the endogenous Sf9 cell activity. An analysis of a partial TLR1 cDNA from Sf9 cells indicates that residues that line the substrate-binding cleft of Sf9 TLR1 and human BMP1 are nearly perfectly conserved, offering an explanation of why Sf9 cells so accurately process mammalian DSP-PP. The fact that several mutations in DSP-PP240 significantly modified the amount of PP240 product generated from DSP-PP240 precursor protein cleavage suggests that such mutation may affect the mineralization process.  相似文献   

5.
6.
7.
Vitamin A, 1,25-dihydroxyvitamin D3 and dexamethasone are well-characterized hydrophobic molecules whose biological actions are mediated via different members of the nuclear hormone receptor family. We report here their actions on tooth formation at the molecular level. We have tested the effects of these compounds on osteopontin (OPN), dentin sialoprotein (DSP-PP), and collagen type I expression in pre-mineralization and mineralization stage rat tooth organ cultures which mirror in vivo developmental patterns. These proteins are all believed to participate in the mineralization of dentin. 1,25-Dihydroxyvitamin D3 up-regulated OPN, but had no effect on DSP-PP mRNA expression. Vitamin A up-regulated DSP-PP expression as did dexamethasone. Dexamethasone also up-regulated collagen type I expression. Our results suggest that 1,25-dihydroxyvitamin D3 does not modulate dentin mineralization by directly affecting DSP-PP expression. Vitamin A likely contributes to dentin mineralization by up-regulating DSP-PP expression. Finally, the up-regulation of DSP-PP expression in tooth germ cultures treated with dexamethasone suggests that its application to patient's dental pulp might promote increased extracellular matrix synthesis and mineralization in the pulp and may explain the narrowing of the dental pulp cavity in patients undergoing long-term dexamethasone administration.  相似文献   

8.
Gottesfeld JM  Luger K 《Biochemistry》2001,40(37):10927-10933
Previous studies have compared the relative free energies for histone octamer binding to various DNA sequences; however, no reports of the equilibrium binding affinity of the octamer for unique sequences have been presented. It has been shown that nucleosome core particles (NCPs) dissociate into free DNA and histone octamers (or free histones) on dilution without generation of stable intermediates. Dissociation is reversible, and an equilibrium distribution of NCPs and DNA is rapidly attained. Under low ionic strength conditions (<400 mM NaCl), NCP dissociation obeys the law of mass action, making it possible to calculate apparent equilibrium dissociation constants (K(d)s) for NCPs reconstituted on defined DNA sequences. We have used two DNA sequences that have previously served as model systems for nucleosome reconstitution studies, human alpha-satellite DNA and Lytechinus variegatus 5S DNA, and find that the octamer exhibits K(d)s of 0.03 and 0.06 nM, respectively, for these sequences at 50 mM NaCl. These DNAs form NCPs that are approximately 2 kcal/mol more stable than total NCPs isolated from cellular chromatin. As for mixed-sequence NCPs, increasing ionic strength or temperature promotes dissociation. van't Hoff plots of K(a)s versus temperature reveal that the difference in binding free energy for alpha-satellite and 5S NCPs compared to bulk NCPs is due almost entirely to a more favorable entropic component for NCPs formed on the unique sequences compared to mixed-sequence NCPs. Additionally, we address the contribution of the amino-terminal tail domains of histones H3 and H4 to octamer affinity through the use of recombinant tailless histones.  相似文献   

9.
10.
11.
12.
BACKGROUND: Approximately one-third of the Drosophila kinome has been ascribed some cell-cycle function. However, little is known about which of its 117 protein phosphatases (PPs) or subunits have counteracting roles. RESULTS: We investigated mitotic roles of PPs through systematic RNAi. We found that G(2)-M progression requires Puckered, the JNK MAP-kinase inhibitory phosphatase and PP2C in addition to string (Cdc25). Strong mitotic arrest and chromosome congression failure occurred after Pp1-87B downregulation. Chromosome alignment and segregation defects also occurred after knockdown of PP1-Flapwing, not previously thought to have a mitotic role. Reduction of several nonreceptor tyrosine phosphatases produced spindle and chromosome behavior defects, and for corkscrew, premature chromatid separation. RNAi of the dual-specificity phosphatase, Myotubularin, or the related Sbf "antiphosphatase" resulted in aberrant mitotic chromosome behavior. Finally, for PP2A, knockdown of the catalytic or A subunits led to bipolar monoastral spindles, knockdown of the Twins B subunit led to bridged and lagging chromosomes, and knockdown of the B' Widerborst subunit led to scattering of all mitotic chromosomes. Widerborst was associated with MEI-S332 (Shugoshin) and required for its kinetochore localization. CONCLUSIONS: We identify cell-cycle roles for 22 of 117 Drosophila PPs. Involvement of several PPs in G(2) suggests multiple points for its regulation. Major mitotic roles are played by PP1 with tyrosine PPs and Myotubularin-related PPs having significant roles in regulating chromosome behavior. Finally, depending upon its regulatory subunits, PP2A regulates spindle bipolarity, kinetochore function, and progression into anaphase. Discovery of several novel cell-cycle PPs identifies a need for further studies of protein dephosphorylation.  相似文献   

13.
14.
15.
16.
17.
《Cellular signalling》2014,26(10):2175-2185
Protein phosphorylation plays a determining role in the regulation of chondrogenesis in vitro. While signalling pathways governed by protein kinases including PKA, PKC, and mitogen-activated protein kinases (MAPK) have been mapped in great details, published data relating to the specific role of phosphoprotein phosphatases (PPs) in differentiating chondroprogenitor cells or in mature chondrocytes is relatively sparse. This review discusses the known functions of Ser/Thr-specific PPs in the molecular signalling pathways of chondrogenesis. PPs are clearly equally important as protein kinases to counterbalance the effect of reversible protein phosphorylation. Of the main Ser/Thr PPs, some of the functions of PP1, PP2A and PP2B have been characterised in the context of chondrogenesis. While PP1 and PP2A appear to negatively regulate chondrogenic differentiation and maintenance of chondrocyte phenotype, calcineurin is an important stimulatory mediator during chondrogenesis but becomes inhibitory in mature chondrocytes. Furthermore, PPs are implicated to be mediators during the pathogenesis of osteoarthritis that makes them potential therapeutic targets to be exploited in the close future. Among the many yet unexplored targets of PPs, modulation of plasma membrane ion channel function and participation in mechanotransduction pathways are emerging novel aspects of signalling during chondrogenesis that should be further elucidated. Besides the regulation of cellular ion homeostasis, other potentially significant novel roles for PPs during the regulation of in vitro chondrogenesis are discussed.  相似文献   

18.
Four structurally different protein phosphatases (PPs) inhibitors - fluoride, calyculin A, okadaic acid and cantharidin--were tested for their ability to modulate unidirectional Na(+) influx in rat red blood cells. Erythrocytes were incubated at 37 degrees C in isotonic and hypertonic media containing 1 mM ouabain and (22)Na in the absence or presence of PP inhibitors. Exposure of the cells to 20 mM fluoride or 50 nM calyculin A for 1 h under isosmotic conditions caused a significant stimulation of Na(+) influx, whereas addition of 200 microM cantharidin or 100 nM okadaic acid had no effect. After 2 h of treatment, however, all these PPs blockers significantly enhanced Na(+) transport in rat erythrocytes. Selective inhibitors of PP-1 and PP-2A types, calyculin A, cantharidin and okadaic acid, produced similar ( approximately 1.2-1.4-fold) stimulatory effects on Na(+) influx in the cells. Activation of Na(+) influx was unchanged with increasing calyculin A concentration from 50 to 200 nM. No additive stimulation of Na(+) influx was observed when the cells were treated with combination of 20 mM fluoride and 50 nM calyculin A. Na(+) influx induced by PPs blockers was inhibited by 1 mM amiloride and 200 muM bumetanide approximately in the equal extent, indicating the involvement of Na(+)/H(+) exchange and Na-K-2Cl cotransport in sodium transport through rat erythrocytes membrane. Activation of Na(+) transport in the cells induced by calyculin A and fluoride was associated with increase of intracellular Na(+) content. Shrinkage of the rat erythrocytes resulted in 2-fold activation of Na(+) influx. All tested PPs inhibitors additionally activated the Na(+) influx by 70-100% above basal shrinkage-induced level. Amiloride and bumetanide have diminished both the shrinkage-induced and PPs-inhibitors-induced Na(+) influxes. Thus, our observations clearly indicate that activities of Na(+)/H(+) exchanger and Na-K-2Cl cotransporter in rat erythrocytes are regulated by protein phosphatases and stimulated when protein dephosphorylation is inhibited.  相似文献   

19.
20.
Using an antibody against chicken apolipoprotein (apo) A-I, we identified multiple cDNA clones for the protein in two intestinal cDNA libraries in λgtll. The complete nucleotide sequence of chicken apoA-I cDNA was determined. The sequence predicts a mature protein of 240 amino acids, a 6-amino acid propeptide and an 18-amino acid signal peptide. Using a 32P-cDNA probe, we detected the presence of apoA-I mRNA in 21 day old chicken intestine, liver, kidney, spleen, breast muscle and brain. The primary sequence of apoA-I contains numerous tandem repeats of 11 and 22 residues in a manner similar to the mammalian proteins. Our analysis of apoA-I sequences from human, rabbit, dog, rat, and chicken indicates that the rate of amino acid substitution is considerably faster in the rat lineage than in other mammalian lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号