首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proposal to implement a phylogenetic nomenclatural system governed by the PhyloCode), in which taxon names are defined by explicit reference to common descent, has met with strong criticism from some proponents of phylogenetic taxonomy (taxonomy based on the principle of common descent in which only clades and species are recognized). We examine these criticisms and find that some of the perceived problems with phylogenetic nomenclature are based on misconceptions, some are equally true of the current rank-based nomenclatural system, and some will be eliminated by implementation of the PhyloCode. Most of the criticisms are related to an overriding concern that, because the meanings of names are associated with phylogenetic pattern which is subject to change, the adoption of phylogenetic nomenclature will lead to increased instability in the content of taxa. This concern is associated with the fact that, despite the widespread adoption of the view that taxa are historical entities that are conceptualized based on ancestry, many taxonomists also conceptualize taxa based on their content. As a result, critics of phylogenetic nomenclature have argued that taxonomists should be free to emend the content of taxa without constraints imposed by nomenclatural decisions. However, in phylogenetic nomenclature the contents of taxa are determined, not by the taxonomist, but by the combination of the phylogenetic definition of the name and a phylogenetic hypothesis. Because the contents of taxa, once their names are defined, can no longer be freely modified by taxonomists, phylogenetic nomenclature is perceived as limiting taxonomic freedom. We argue that the form of taxonomic freedom inherent to phylogenetic nomenclature is appropriate to phylogenetic taxonomy in which taxa are considered historical entities that are discovered through phylogenetic analysis and are not human constructs.  相似文献   

2.
Ceci n'est pas une pipe: names, clades and phylogenetic nomenclature   总被引:2,自引:0,他引:2  
An introduction is provided to the literature and to issues relating to phylogenetic nomenclature and the PhyloCode, together with a critique of the current Linnaean system of nomenclature. The Linnaean nomenclature fixes taxon names with types, and associates the names with ranks (genus, family, etc.). In phylogenetic nomenclature, names are instead defined with reference to cladistic relationships, and the names are not associated with ranks. We argue that taxon names under the Linnaean system are unclear in meaning and provide unstable group–name associations, notwithstanding whether or not there are agreements on relationships. Furthermore, the Linnaean rank assignments lack justification and invite unwarranted comparisons across taxa. On the contrary, the intention of taxon names in phylogenetic nomenclature is clear and stable, and the application of the names will be unambiguous under any given cladistic hypothesis. The extension of the names reflects current knowledge of relationships, and will shift as new hypotheses are forwarded. The extension of phylogenetic names is, therefore, clear but is associated to (and thus dependent upon) cladistic hypotheses. Stability in content can be maximized with carefully formulated name definitions. A phylogenetic nomenclature will shift the focus from discussions of taxon names towards the understanding of relationships. Also, we contend that species should not be recognized as taxonomic units. The term ‘species’ is ambiguous, it mixes several distinct classes of entities, and there is a large gap between most of the actual concepts and the evidence available to identify the entities. Instead, we argue that only clades should be recognized. Among these, it is useful to tag the smallest named clades, which all represent non-overlapping groups. Such taxa  – LITUs (Least Inclusive Taxonomic Units) – are distinguished from more inclusive clades by being spelled with lower-case initial letter. In contrast to species, LITUs are conceptually straightforward and are, like other clades, identified by apomorphies.  相似文献   

3.
A new species of Discodorididae is described from the Pacific coasts of Mexico and Panama. It is named using a modified version of the epithet-based nomenclature proposed by Url Lanham 40 years ago. The species described here can be placed confidently in the clade Discodorididae, but not in any of its subclades (traditionally taxa of genus rank). The unique, epithet-based name of the species is “aliciae Dayrat, 2005”. The combination Discodorididae aliciae may also be used, once the unique, epithet-based name has been cited. Discodorididae aliciae is an example of how a new species of Discodorididae could be named in the context of phylogenetic nomenclature. I argue that epithet-based species names and their combinations with clade addresses should be very appealing to people who think phylogenetically. I also discuss two advantages of such combinations: first, they should be more stable than Linnaean binomials, which often change for arbitrary (e.g. non-phylogenetic) reasons; second, they should help taxonomists avoid creating multiple names for the same species.  相似文献   

4.
Common ancestry is a central feature of the theory of evolution, yet it is not clear what “common ancestry” actually means; nor is it clear how it is related to other terms such as “the Tree of Life” and “the last universal common ancestor”. I argue these terms describe three distinct hypotheses ordered in a logical way: that there is a Tree of Life is a claim about the pattern of evolutionary history, that there is a last universal common ancestor is an ontological claim about the existence of an entity of a specific kind, and that there is universal common ancestry is a claim about a causal pattern in the history of life. With these generalizations in mind, I argue that the existence of a Tree of Life entails a last universal common ancestor, which would entail universal common ancestry, but neither of the converse entailments hold. This allows us to make sense of the debates surrounding the Tree, as well as our lack of knowledge about the last universal common ancestor, while still maintaining the uncontroversial truth of universal common ancestry.  相似文献   

5.
Taxon names as paradigms: the structure of nomenclatural revolutions   总被引:1,自引:1,他引:0  
In the present paper I argue that the two systems of phylogenetic nomenclature hitherto proposed represent, in a generalized sense, two different philosophies for how science develops and progresses. The phylogenetic system of definition initially proposed by de Queiroz and Gauthier [Syst. Zool. 39 (1990) 307], and later labeled PSD, is typically Popperian in the sense that science progresses toward truth by an accumulation of knowledge. Phylogenetic definitions of taxon names are assumed to adapt automatically to each new hypothesis of phylogeny, thereby reflecting better and better hypotheses. The phylogenetic system of reference proposed by Härlin [Zool. Scr. 27 (1998a) 381], on the other hand, is more Kuhnian, because it is built on the idea that successive hypotheses are incommensurable (and thus not cumulative) and that taxon names might be equalled with low‐level paradigms.  相似文献   

6.
7.
Despite the widely held belief that modem biological taxonomy is evolutionary, some of the most fundamental concepts and principles in the current system of biological nomenclature are based on a nonevolutionary convention that pre-dates widespread acceptance of an evolutionary world view by more than a century. The development of a phylogenetic system of nomenclature requires reformulating these concepts and principles so that they are no longer based on the Linnean categories but on the tenet of common descent.  相似文献   

8.
Phylogenetic approaches to biological nomenclature are becoming increasingly common. Here I compare the behaviour of two such approaches, the phylogenetic system of definition and the phylogenetic system of reference, when there is a shift in the preference of phylogenetic hypotheses. The comparison is based on a case study from nemertean systematics and is the first to compare two different phylogenetic approaches throughout three stages of change, including two stages of phylogenetic nomenclature. It is concluded that a phylogenetic system of reference in combination with uninomials is superior in conveying phylogenetic information.  相似文献   

9.
Overviews are provided for traditional and phylogenetic nomenclature. In traditional nomenclature, a name is provided with a type and a rank. In the rankless phylogenetic nomenclature, a taxon name is provided with an explicit phylogenetic definition, which attaches the name to a clade. Linnaeus’s approach to nomenclature is also reviewed, and it is shown that, although the current system of nomenclature does use some Linnaean conventions (e.g., certain rank-denoting terms, binary nomenclature), it is actually quite different from Linnaean nomenclature. The primary differences between traditional and phylogenetic nomenclature are reviewed. In phylogenetic nomenclature, names are provided with explicit phylogenetic definitions, whereas in traditional nomenclature names are not explicitly defined. In phylogenetic nomenclature, a name remains attached to a clade regardless of how future changes in phylogeny alter the clade’s content; in traditional nomenclature a name is not “married” to any particular clade. In traditional nomenclature, names must be assigned ranks (an admittedly arbitrary process), whereas in phylogenetic nomenclature there are no formal ranks. Therefore, in phylogenetic nomenclature, the name itself conveys no hierarchical information, and the name conveys nothing regarding set exclusivity. It is concluded that the current system is better able to handle new and unexpected changes in ideas about taxonomic relationships. This greater flexibility, coupled with the greater information content that the names themselves (i.e., when used outside the context of a given taxonomy or phytogeny) provide, makes the current system better designed for use by all users of taxon names.  相似文献   

10.
In recent times, evolution has become a central tenet of taxonomy, but nomenclature has consistently been decoupled from the tree‐thinking process, often leading to significant issues in reconciling traditional (Linnaean) names with clades in the Tree of Life. Recent evolutionary studies on the Roucela clade, a group of endemic plants found in the Mediterranean Basin, motivated the establishment of phylogenetic concepts to formally anchor clade names on the Campanuloideae (Campanulaceae) tree. These concepts facilitate communication of clades that approximate traditionally defined groups, in addition to naming newly discovered cryptic diversity in a phylogenetic framework.  相似文献   

11.
The importance of evolutionary parallelisms and their differences from evolutionary convergences have been historically underappreciated, as recently noticed in Gould's last book `The structure of evolutionary history'. In that book, Gould make an effort to distinguish and to reinterpret these concepts in the light of the new discoveries of the last decades on developmental biology and genetics, presenting the elegant metaphor of `Pharaonic bricks versus Corinthian columns'. In this paper I will briefly discuss these concepts, and will argue that, despite the advances that have been made to define them in theory, it is rather hard to differentiate them in a practical phylogenetic context. In order to do so, I will provide some few examples from my own empirical studies on the last years of one of the most morphologically and taxonomically diverse groups of Vertebrates, the catfishes.  相似文献   

12.
Abstract: Vetulicolians are problematic Cambrian fossils with a debated phylogenetic history. Here, we describe two vetulicolian specimens from the Lower Cambrian Sirius Passet locality in North Greenland. One of the specimens is assigned to Ooedigera peeli gen. et sp. nov, whereas the other is retained under open nomenclature. The mode of tail flexibility has been debated in the literature, and we argue here that the tail normally flexed laterally to generate power strokes rather than dorsoventrally. The phylogenetic relationships of vetulicolians are discussed in the light of current knowledge of deuterostome phylogeny and morphology, and it is concluded that the best hypothesis on currently available evidence is that vetulicolians are a clade or paraphyletic assemblage of stem‐Deuterostomata. The presence of a voluminous, sediment‐filled anterior chamber suggests that the atrium may be a synapomorphy of deuterostomes.  相似文献   

13.
The problem of homology has been a consistent source of controversy at the heart of systematic biology, as has the step of morphological character analysis in phylogenetics. Based on a clear epistemic framework and a characterization of “characters” as diagnostic evidence units for the recognition of not directly identifiable entities, I discuss the ontological definition and empirical recognition criteria of phylogenetic, developmental and comparative homology, and how these three accounts of homology each contribute to an understanding of the overall phenomenon of homology. I argue that phylogenetic homologies are individuals or historical kinds that require comparative homology for identification. Developmental homologies are natural kinds that ultimately rest on phylogenetic homologies and also require comparative homology for identification. Comparative homologies on the other hand are anatomical structural kinds that are directly identifiable. I discuss pre‐Darwinian comparative homology concepts and their problem of invoking non‐material forces and involving the a priori assumption of a stable positional reference system. Based on Young's concept of comparative homology, I suggest a procedure for recognizing comparative homologues that lacks these problems and that utilizes a semantic framework. This formal conceptual framework provides the much needed semantic transparency and computer‐parsability for documenting, communicating and analysing similarity propositions. It provides an essential methodological framework for generalizing over individual organisms and identifying and demarcating anatomical structural kinds, and it provides the missing link to the logical chain of identifying phylogenetic homology. The approach substantially increases the analytical accessibility of comparative research and thus represents an important contribution to the theoretical and methodological foundation of morphology and comparative biology.  相似文献   

14.
Using nucleotide sequences from three genomic regions of the human and simian T-cell lymphotropic virus type I (HTLV-I/STLV-I)-consisting of 69 sequences from a 140-bp segment of the pol region, 98 sequences from a 503-bp segment of the LTR, and 154 sequences from a 386-bp segment of the env region-we tested two hypotheses concerning the geographic origin and evolution of STLV-I and HTLV-I. First, we tested the assumption of equal rates of evolution along STLV-I and HTLV-I lineages using a likelihood ratio test to ascertain whether current levels of genomic diversity can be used to determine ancestry. We demonstrated that unequal rates of evolution along HTLV-I and STLV-I lineages have occurred throughout evolutionary time, thus calling into question the use of pairwise distances to assign ancestry. Second, we constructed phylogenetic trees using multiple phylogenetic techniques to test for the geographic origin of STLV-I and HTLV-I. Using the principle of likelihood, we chose a statistically justified model of evolution for each data set. We demonstrated the utility of the likelihood ratio test to determine which model of evolution should be chosen for phylogenetic analyses, revealing that using different models of evolution produces conflicting results, and neither the hypothesis of an African origin nor the hypothesis of an Asian origin can be rejected statistically. Our best estimates of phylogenetic relationships, however, support an African origin of PTLV for each gene region.  相似文献   

15.
The Third Meeting of the International Society for Phylogenetic Nomenclature (ISPN) convened at Dalhousie University in Halifax, Canada, from 20 to 22 July 2008. In addition to contributed talks, the conference included a progress report on the PhyloCode 'Companion Volume', a discussion of how to complete this book in a timely fashion, a demonstration of the online registration data base (RegNum), plenary talks, and Council and business meetings. Topics discussed at the meeting include problems created by rank-based nomenclature in various eukaryotic taxa, dealing with hybrids in rank-based and phylogenetic nomenclature, phyloinformatics, the choice of names to use when the taxonomic content associated with available names varies, teaching phylogenetic nomenclature, and the application of phylogenetic nomenclature to specific taxa.  相似文献   

16.
The modern nomenclature, phenotypic, medical, ecological and phylogenetic classification of streptococci and different classification of streptococcal human diseases are presented. All phylogenetic groups of streptococci have been shown to contain species causing diseases in man. The most medically significant groups are the phylogenetic groups Pyogenes and Mitis. Directions of the improvement of the classification of streptococci and streptococcal human diseases on the basis of modern concepts on the taxonomy of streptococci, the biological properties and ecology of the infective agents, as well as the genesis and clinical picture of diseases induced by them, have been determined.  相似文献   

17.
A natural starting place for developing a phylogenetic species concept is to examine monophyletic groups of organisms. Proponents of “the” Phylogenetic Species Concept fall into one of two camps. The first camp denies that species even could be monophyletic and groups organisms using character traits. The second groups organisms using common ancestry and requires that species must be monophyletic. I argue that neither view is entirely correct. While monophyletic groups of organisms exist, they should not be equated with species. Instead, species must meet the more restrictive criterion of being genealogically exclusive groups where the members are more closely related to each other than to anything outside the group. I carefully spell out different versions of what this might mean and arrive at a working definition of exclusivity that forms groups that can function within phylogenetic theory. I conclude by arguing that while a phylogenetic species concept must use exclusivity as a grouping criterion, a variety of ranking criteria are consistent with the requirement that species can be placed on phylogenetic trees.
Joel D. VelascoEmail:
  相似文献   

18.
Phylogenetic definitions and taxonomic philosophy   总被引:4,自引:0,他引:4  
An examination of the post-Darwinian history of biological taxonomy reveals an implicit assumption that the definitions of taxon names consist of lists of organismal traits. That assumption represents a failure to grant the concept of evolution a central role in taxonomy, and it causes conflicts between traditional methods of defining taxon names and evolutionary concepts of taxa. Phylogenetic definitions of taxon names (de Queiroz and Gauthier 1990) grant the concept of common ancestry a central role in the definitions of taxon names and thus constitute an important step in the development of phylogenetic taxonomy. By treating phylogenetic relationships rather than organismal traits as necessary and sufficient properties, phylogenetic definitions remove conflicts between the definitions of taxon names and evolutionary concepts of taxa. The general method of definition represented by phylogenetic definitions of clade names can be applied to the names of other kinds of composite wholes, including populations and biological species. That the names of individuals (composite wholes) can be defined in terms of necessary and sufficient properties provides the foundation for a synthesis of seemingly incompatible positions held by contemporary individualists and essentialists concerning the nature of taxa and the definitions of taxon names.  相似文献   

19.
Linnaean binomial nomenclature is logically incompatible with the phylogenetic nomenclature of de Queiroz and Gauthier (1992, Annu. Rev. Ecol. Syst. 23:449-480): The former is based on the concept of genus, thus making this rank mandatory, while the latter is based on phylogenetic definitions and requires the abandonment of mandatory ranks. Thus, if species are to receive names under phylogenetic nomenclature, a different method must be devised to name them. Here, 13 methods for naming species in the context of phylogenetic nomenclature are contrasted with each other and with Linnaean binomials. A fundamental dichotomy among the proposed methods distinguishes those that retain the entire binomial of a preexisting species name from those that retain only the specific epithet. Other relevant issues include the stability, uniqueness, and ease of pronunciation of species names; their capacity to convey phylogenetic information; and the distinguishability of species names that are governed by a code of phylogenetic nomenclature both from clade names and from species names governed by the current codes. No method is ideal. Each has advantages and drawbacks, and preference for one option over another will be influenced by one's evaluation of the relative importance of the pros and cons for each. Moreover, sometimes the same feature is viewed as an advantage by some and a drawback by others. Nevertheless, all of the proposed methods for naming species in the context of phylogenetic nomenclature provide names that are more stable than Linnaean binomials.  相似文献   

20.
Intra- and intergeneric distances derived from maximum-likelihood phylogenetic trees inferred from 254 nuclear ITS rDNA sequences were examined for seven families of euascomycetes, representing five classes. The intra- and intergeneric distances were well separated in most cases, but the distances varied between families. The analysis of the distance distributions provides a powerful tool for identifying certain taxa with highly deviating distances and thus cases of excessive lumping or splitting. Some cases of lumping and splitting found in different families are briefly discussed. The results of the analysis show that the generic concepts differ between the families. The consequences for nomenclature are discussed and a method abandoning binomial nomenclature while keeping the style of species names is recommended to ensure nomenclatural stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号