首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sex Determination by Sex Chromosomes in Dioecious Plants   总被引:5,自引:0,他引:5  
Abstract: Sex chromosomes have been reported in several dioecious plants. The most general system of sex determination with sex chromosomes is the XY system, in which males are the heterogametic sex and females are homogametic. Genetic systems in sex determination are divided into two classes including an X chromosome counting system and an active Y chromosome system. Dioecious plants have unisexual flowers, which have stamens or pistils. The development of unisexual flowers is caused by the suppression of opposite sex primordia. The expression of floral organ identity genes is different between male and female flower primordia. However, these floral organ identity genes show no evidence of sex chromosome linkage. The Y chromosome of Rumex acetosa contains Y chromosome-specific repetitive sequences, whereas the Y chromosome of Silene latifolia has not accumulated chromosome-specific repetitive sequences. The different degree of Y chromosome degeneration may reflect on evolutionary time since the origination of dioecy. The Y chromosome of S. latifolia functions in suppression of female development and initiation and completion of anther development. Analyses of mutants suggested that female suppressor and stamen promoter genes are localized on the Y chromosome. Recently, some sex chromosome-linked genes were isolated from flower buds of S. latifolia.  相似文献   

2.
Molecular dissection of the human Y-chromosome   总被引:3,自引:0,他引:3  
Ali S  Hasnain SE 《Gene》2002,283(1-2):1-10
Human Y chromosome, earlier thought to be gene deficient, has attracted a great deal of attention owing to its supremacy in male sex determination and unique haplotype status in the genome. Studies on Y chromosome have shown the presence of different types of satellite DNA and several genes implicated with a variety of physical and physiological functions. The interaction of these repetitive DNA with genes in normal individuals and in patients with Y-chromosome-related genetic anomalies is still an unresolved issue and is actively being pursued. The fast changing scenario of the human genome project is likely to effect our overall understanding of the Y chromosome and Y-linked genetic anomalies in a big way. We provide a brief overview of the organization of Y chromosome with respect to several important loci encompassing both the arms and their likely involvement/modulation in genetic anomalies. The experimental approaches discussed here are envisaged to be of clinical relevance for the molecular diagnosis of the Y-linked disorders.  相似文献   

3.
Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced). We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority.  相似文献   

4.
In the Nile tilapia, Oreochromis niloticus, sex determination is primarily genetic, with XX females and XY males. While the X and Y chromosomes (the largest pair) cannot be distinguished in mitotic chromosome spreads, analysis of comparative hybridization of X and Y chromosome derived probes (produced, by microdissection and DOP-PCR, from XX and YY genotypes, respectively) to different genotypes (XX, XY and YY) has demonstrated that sequence differences exist between the sex chromosomes. Here we report the characterization of these probes, showing that a significant proportion of the amplified sequences represent various transposable elements. We further demonstrate that concentrations of a number of these individual elements are found on the sex chromosomes and that the distribution of two such elements differs between the X and Y chromosomes. These findings are discussed in relation to sex chromosome differentiation in O. niloticus and to the changes expected during the early stages of sex chromosome evolution.  相似文献   

5.
6.
P Zhang  R L Stankiewicz 《Genetics》1998,150(2):735-744
The Y chromosome in Drosophila melanogaster is composed of highly repetitive sequences and is essential only in the male germ line. We employed P-element insertional mutagenesis to induce male sterile mutations in the Y chromosome. By using a combination of two modifiers of position effect variegation, adding an extra Y chromosome and increasing temperature, we isolated 61 P(ry+) elements in the Y chromosome. Six of these Y-linked insertions (approximately 10%) induced male sterile mutations that are mapped to two genes on the long and one on the short arms of the Y chromosome. These mutations are revertible to the wild type in a cell-autonomous and germ-line-dependent manner, consistent with previously defined Y-linked gene functions. Phenotypes associated with these P-induced mutations are similar to those resulting from deletions of the Y chromosome regions corresponding to the male fertility genes. Three alleles of the kl-3 gene on the Y long arm result in loss of the axonemal outer dynein arms in the spermatid tail, while three ks-2 alleles on the Y short arm induce defects at early postmeiotic stages. The recovery of the ms(Y) mutations induced by single P-element insertions will facilitate our effort to understand the structural and functional properties of the Y chromosome.  相似文献   

7.
Enamel thickness of 45,X females' permanent teeth.   总被引:1,自引:0,他引:1       下载免费PDF全文
Enamel thicknesses in 45,X females', their male and female relatives', and population control males' and females' permanent tooth crowns were determined from radiographs. The results showed that the enamel layer in both maxillary first incisors and canines of 45,X females is definitely thinner than that of control males or females. Enamel in control males' and females' teeth was about equal in size. The distance between mesial and distal dentino-enamel junctions or the thickness of "dentin" was similar in 45,X females' and in control females' teeth, but definitely smaller than in control males' teeth. These findings show that in the presence of the second sex-chromosome in the chromosome complement, whether X or Y, there is a definite and equal increase in the amount of enamel. On the other hand, in the presence of the Y chromosome in the chromosome complement, relative to the second X chromosome, there is a definite increase in the thickness of the dentin. The results of earlier studies have indicated a direct growth-promoting effect of the sex chromosomes on tooth growth, and that the effect of X and Y chromosomes is different. The present results suggest that the influence of the X- and Y-chromosome gene(s) on amelogenesis is the same in quantitative terms but different in relation to the determination of the distance between dentino-enamel junctions; the Y chromosome is more effective than the X chromosome in that respect. It is postulated that this size-increasing effect of the Y-chromosome gene(s) might result from its profound effect on cell proliferations.  相似文献   

8.
Two related genes with potentially similar functions, one on the Y chromosome and one on the X chromosome, were examined to determine if they evolved differently because of their chromosomal positions. Six hundred fifty-seven base pairs of coding sequence of Jarid1d (Smcy) on the Y chromosome and Jarid1c (Smcx) on the X chromosome were sequenced in 13 rodent taxa. An analysis of replacement and silent substitutions, using a counting method designed for samples with small evolutionary distances, showed a significant difference between the two genes. The different patterns of replacement and silent substitutions within Jarid1d and Jarid1c may be a result of evolutionary mechanisms that are particularly strong on the Y chromosome because of its unique properties. These findings are similar to results of previous studies of Y chromosomal genes in these and other mammalian taxa, suggesting that genes on the mammalian Y evolve in a chromosome-specific manner.  相似文献   

9.
Ulla Gripenberg 《Chromosoma》1964,15(5):618-629
Summary The material consists of 84 metaphase plates from 17 individuals with clearly distinguishable Y chromosomes. The plates were obtained from leucocyte cultures. In making the preparations, exactly the same procedure was employed in all cases, including among other things, air-drying and light flaming.It was found that the size of the Y chromosome is subject to interindividual variation. The size of the Y chromosome has been expressed in relation to the mean length of the other small acrocentric chromosomes. The chromosomes have been tentatively classified into the following main groups:1. Y/G = 1.8; 2. Y/G =1.5; 3. Y/G is somewhat larger than G or 1.1, and 4. Y/G equals the mean of the small acrocentric chromosomes, or Y/G = 1. In the long Y chromosome two secondary constrictions have been observed.The location of the Y chromosome has been determined as peripheral or non-peripheral. The proband material has been divided into three main groups. The first comprises the individuals with a large Y chromosome (Y/G = 1.8). The second group includes individuals showing Down's syndrome and having 47 chromosomes, and the third comprises individuals with 46 chromosomes and possessing a Y/G sized 1 to 1.5. Preferential peripheral location of the Y chromosome has not been statistically verified in any one of these groups.  相似文献   

10.
Isolation of recombinant bacteriophage containing male-specific mouse DNA   总被引:3,自引:0,他引:3  
The mammalian Y chromosome is an isolated piece of genetic material that directs sexual determination and gametogenesis. Very little is understood about the mechanism whereby the Y chromosome carries out these functions. Also, there is a severe lack of genetic markers on this chromosome. In order to understand the structure and function of the Y chromosome at the level of its DNA sequences and to provide genetic markers, we are isolating clones of DNA whose sequences are found primarily in DNA from male mice. To this end, we have developed a procedure for the identification of such clones. Application of this screening procedure to a lambda library derived from mouse sperm DNA has yielded 12 distinct clones, part of whose sequences are present predominantly in male DNA. Besides this DNA, they also contain other sequences that are shared with female DNA. These clones are either derived from the Y chromosome or they represent autosomal sequences specifically amplified during male development.  相似文献   

11.
Three types of contraction (steady, speeding and slowing) of fluorescent (f) and nonfluorescent (nf) parts of the human Y chromosome were revealed in the spiralization interval limited by reper chromosome 3 length from 16.6 to 2.9 mkm. On the basis of regression analysis it was shown that in the initial phase of the spiralization interval studied the f-block was condensed more rapidly than the nf-region; then the speed of contraction of the latter exceeded that of the former. A decline of the Y chromosome condensation in relation to ageing was revealed. A possible chromosome segregation disturbance in gametogenesis due to senescent changes of heterochromatic regions is discussed.  相似文献   

12.
The genetically induced increase in the number of 18S + 28S ribosomal genes known as magnification has been reported to occur in male Drosophila but has not previously been observed in females. We now report that bobbed magnified (bbm) is recovered in progeny of female Drosophila carrying three different X bobbed (Xbb) chromosomes and the helper XYbb chromosome, which is a derivative of the Ybb- chromosome. Using different combinations of bb or bb+ X and Y chromosomes, we show that magnification in females requires both a deficiency in ribosomal genes and the presence of a Y chromosome: X/X females that are rDNA-deficient but do not carry a Y chromosome do not produce bbm; similarly, X/X/Y females that carry a Y chromosome but are not rDNA-deficient do not produce bbm. Bobbed magnified is only recovered from rDNA-deficient X/XY, X/X/Y or XX/Y females. We have also found that females carrying a ring Xbb chromosome together with the XYbb- chromosome do not produce bbm, indicating that ring X chromosomes are inhibited to magnify in females as in males. We postulate that the requirement for a Y chromosome is due to sequences on the Y chromosome that regulate or encode factor(s) required for magnification, or alternatively, affect pairing of the ribosomal genes.--These studies demonstrate that magnification is not limited to males but also occurs in females. Magnification in females is induced by rDNA-deficient conditions and the presence of a Y chromosome, and probably occurs by a mechanism similar to that in males.  相似文献   

13.
Dutta UR  Pidugu VK  Goud V  Dalal AB 《Gene》2012,495(2):199-204
Down syndrome is a complex disorder characterized by well defined and distinctive phenotypic features. Approximately 2-3% of all live-born Down individuals are mosaics. Here we report a boy with suspected Down syndrome showing mosaicism for two different cell lines where one cell line is unexpected. The cytogenetic analysis by G-banding revealed a karyotype of 47 XY+21 [20]/46,X+marker [30]. Further, molecular cytogenetic analysis with spectral karyotyping identified the marker as a derivative of Y chromosome. The delineation of Y chromosomal DNA was done by quantitative real-time PCR and aneuploidy detection by quantitative fluorescence PCR. The Y-short tandem repeats typing was performed to estimate the variation in quantity as well as to find out the extent of deletion on Y chromosome using STR markers. Fluorescence in situ hybridization using Y centromeric probe was also performed to confirm the origin of the Y marker. Further fine mapping of the marker was carried out with three bacterial artificial chromosome clones RP11-20H21, RP11-375P13, RP11-71M14, which defined the hypothetical position of the deletion. In our study we defined the extent of deletion of the marker chromosome and also discussed it in relation with mosaicism. This is the first report of mosaic Down syndrome combined with a second de novo mosaic marker derived from the Y chromosome.  相似文献   

14.
The Y chromosome evolves from an autochromosome and accumulates male-related genes including sex-determining region of Y-chromosome (SRY) and several spermatogenesis-related genes.The human Y chromosome (60 Mb long) is largely composed of repeti-tive sequences that give it a heterochromatic appearance,and it consists of pseudoautosomal,euchromatic,and heterochromatic regions.Located on the two extremities of the Y chromosome,pseudoautosomal regions 1 and 2 (PAR1 and PAR2,2.6 Mb and 320 bp long,re-spectively) are homologs with the termini of the X chromosome.The euchromatic region and some of the repeat-rich heterochromatic parts of the Y chromosome are called "male-specific Y" (MSY),which occupy more than 95% of the whole Y chromosome.After evolu-tion,the Y chromosome becomes the smallest in size with the least number of genes but with the most number of copies of genes that are mostly spermatogenesis-related.The Y chromosome is characterized by highly repetitive sequences (including direct repeats,inverted repeats,and palindromes) and high polymorphism.Several gene rearrangements on the Y chromosome occur during evolution owing to its specific gene structure.The consequences of such rearrangements are not only loss but also gain of specific genes.One hundred and fifty three haplotypes have been discovered in the human Y chromosome.The structure of the Y chromosome in the GenBank belongs to haplotype R1.There are 220 genes (104 coding genes,111 pseudogenes,and 5 other uncategorized genes) according to the most recent count.The 104 coding genes encode a total of about 48 proteins/protein families (including putative proteins/protein families).Among them,16 gene products have been discovered in the azoospermia factor region (AZF) and are related to spermatogenesis.It has been dis-covered that one subset of gene rearrangements on the Y chromosome,"micro-deletions",is a major cause of male infertility in some populations.However,controversies exist about different Y chromosome haplotypes.Six AZFs of the Y chromosome have been discov-ered including AZFa,AZFb,AZFc,and their combinations AZFbc,AZFabc,and partial AZFc called AZFc/gr/gr.Different deletions in AZF lead to different content spermatogenesis loss from teratozoospermia to infertility in different populations depending on their Y hap-lotypes.This article describes the structure of the human Y chromosome and investigates the causes of micro-deletions and their relation-ship with male infertility from the view of chromosome evolution.After analysis of the relationship between AZFc and male infertility,we concluded that spermatogenesis is controlled by a network of genes,which may locate on the Y chromosome,the autochromosomes,or even on the X chromosome.Further investigation of the molecular mechanisms underlying male fertility/infertifity will facilitate our knowledge of functional genomics.  相似文献   

15.
Chromosomes that harbor dominant sex determination loci are predicted to erode over time--losing genes, accumulating transposable elements, degenerating into a functional wasteland and ultimately becoming extinct. The Drosophila melanogaster Y chromosome is fairly far along this path to oblivion. The few genes on largely heterochromatic Y chromosome are required for spermatocyte-specific functions, but have no role in other tissues. Surprisingly, a recent paper shows that divergent Y chromosomes can substantially influence gene expression throughout the D. melanogaster genome.1 These results show that variation on Y has an important influence on the deployment of the genome.  相似文献   

16.
Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes.  相似文献   

17.
Self-pairing of the Y chromosome at prophase of meiosis in XY,Sxr male mice appears to take place in many cells to the exclusion of pairing between the Y and the X. This phenomenon offers an explanation for the high level of X-Y separation seen in these males at prophase of meiosis, additional separations being evident, however, when metaphase I (MI) cells are examined. A minority of prophase cells show the Y paired both autologously and with a sub-terminal region of the X which could be the normal pairing region. The balloon-like configurations observed when self-pairing occurs suggest that the distal Sxr fragment is inverted on the Y chromosome of Sxr carrier males in relation to the normal proximal testis-determining (Td)-containing region.  相似文献   

18.
Y chromosome haplotyping based on microsatellites or single nucleotide polymorphisms has recently proven to be a powerful approach for evolutionary studies of human populations, and also holds great promise for the studies of wild species. However, the use of the approach is hampered in most natural populations by the lack of Y chromosome markers and sequence information. Here, we report the large-scale development of Y chromosome conserved anchor tagged sequence (YCATS) markers in mammals by a polymerase chain reaction screening approach. Exonic primers flanking 48 different introns of Y-linked genes were developed based on human and mouse sequences, and screened on a set of 20 different mammals. On average about 10 introns were amplified for each species and a total of 100 kb of Y chromosome sequence were obtained. Intron size in humans was a reasonable predictor of intron size in other mammals (r2 = 0.45) and there was a negative correlation between human fragment size and amplification success. We discuss a number of factors affecting the possibility of developing conserved Y chromosome markers, including fast evolution of Y chromosome sequences due to male-biased mutation and adaptive evolution of male-specific genes, dynamic evolution of the Y chromosome due to being a nonrecombining unit, and homology with X chromosome sequences.  相似文献   

19.
In a four-week-old child with female external and internal genitalia but with clitoris hypertrophy chromosome analysis from blood lymphocytes revealed a 46,XY karyotype. No deletion of Y chromosomal sequences was detected by PCR analysis of genomic DNA isolated from peripheral blood leucocytes. Because of the increased risk for gonadal tumours, gonadectomy was performed. Conventional cytogenetic analysis of the left dysgenetic gonad revealed a gonosomal mosaicism with a 45,X cell line in 27 of 50 metaphases. The dysgenetic left gonad demonstrated a significantly higher proportion (P = 0.005) of cells carrying a Y chromosome (46.3%) than the streak gonad from the right side (33.9%). Histomorphological examination of the left gonad revealed immature testicular tissue and rete-like structures as well as irregular ovarian type areas with cystic follicular structures. Interphase FISH analysis of the different tissues of this dysgenetic gonad demonstrated variable proportions of cells with an X and a Y chromosome. Whereas Sertoli cells and rete-like structures revealed a significantly higher proportion of XY cells in relation to the whole section of the dysgenetic gonad (P < 0.0001), almost all granulose-like cells carried no Y chromosome. The proportion of XY/X cells in theca-like cells and Leydig cells was similar to that of the whole dysgenetic gonad. In contrast to these findings, spermatogonia exclusively contained an XY constellation.  相似文献   

20.
P. Dimitri  C. Pisano 《Genetics》1989,122(4):793-800
Position effect variegation results from chromosome rearrangements which translocate euchromatic genes close to the heterochromatin. The euchromatin-heterochromatin association is responsible for the inactivation of these genes in some cell clones. In Drosophila melanogaster the Y chromosome, which is entirely heterochromatic, is known to suppress variegation of euchromatic genes. In the present work we have investigated the genetic nature of the variegation suppressing property of the D. melanogaster Y chromosome. We have determined the extent to which different cytologically characterized Y chromosome deficiencies and Y fragments suppress three V-type position effects: the Y-suppressed lethality, the white mottled and the brown dominant variegated phenotypes. We find that: (1) chromosomes which are cytologically different and yet retain similar amounts of heterochromatin are equally effective suppressors, and (2) suppression effect is positively related to the size of the Y chromosome deficiencies and fragments that we tested. It increases with increasing amounts of Y heterochromatin up to 60-80% of the entire Y, after which the effect reaches a plateau. These findings suggest suppression is a function of the amount of Y heterochromatin present in the genome and is not attributable to any discrete Y region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号