首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In many systems, ion flows and long-term endogenous voltage gradients regulate patterning events, but molecular details remain mysterious. To establish a mechanistic link between biophysical events and regeneration, we investigated the role of ion transport during Xenopus tail regeneration. We show that activity of the V-ATPase H(+) pump is required for regeneration but not wound healing or tail development. The V-ATPase is specifically upregulated in existing wound cells by 6 hours post-amputation. Pharmacological or molecular genetic loss of V-ATPase function and the consequent strong depolarization abrogates regeneration without inducing apoptosis. Uncut tails are normally mostly polarized, with discrete populations of depolarized cells throughout. After amputation, the normal regeneration bud is depolarized, but by 24 hours post-amputation becomes rapidly repolarized by the activity of the V-ATPase, and an island of depolarized cells appears just anterior to the regeneration bud. Tail buds in a non-regenerative ;refractory' state instead remain highly depolarized relative to uncut or regenerating tails. Depolarization caused by V-ATPase loss-of-function results in a drastic reduction of cell proliferation in the bud, a profound mispatterning of neural components, and a failure to regenerate. Crucially, induction of H(+) flux is sufficient to rescue axonal patterning and tail outgrowth in otherwise non-regenerative conditions. These data provide the first detailed mechanistic synthesis of bioelectrical, molecular and cell-biological events underlying the regeneration of a complex vertebrate structure that includes spinal cord, and suggest a model of the biophysical and molecular steps underlying tail regeneration. Control of H(+) flows represents a very important new modality that, together with traditional biochemical approaches, may eventually allow augmentation of regeneration for therapeutic applications.  相似文献   

4.
Dendritic degeneration and loss of synaptic proteins are early events correlated with functional decline in neurodegenerative disease. The temporal and mechanistic relationship between synapse loss and cell death, however, remains unclear. We used confocal microscopy and image processing to count post-synaptic sites on rat hippocampal neurons by expressing post-synaptic density protein 95 fused to green fluorescent protein. Fluorescent puncta co-localized with neurotransmitter release sites, NMDA-induced Ca2+ increases and NMDA receptor immunoreactivity. During excitotoxic neurodegeneration, synaptic sites were lost and synaptic transmission impaired. These changes were mediated by NMDA receptors and required Ca2+-dependent activation of the proteasome pathway. Tracking synapses from the same cell following brief neurotoxic insult revealed transient loss followed by recovery. The time-course, concentration-dependence and mechanism for loss of post-synaptic sites were distinct from those leading to cell death. Cells expressing p14ARF, which inhibits ubiquitination of post-synaptic density protein 95 and prevents loss of synaptic sites, displayed an increased sensitivity to glutamate-induced cell death. Thus, excitotoxic synapse loss may be a disease-modifying process rather than an obligatory step leading to cell death. These results demonstrate the importance of assessing synaptic function independent of neuronal survival during neurodegeneration and indicate that this approach will be useful for identifying toxins that degrade synaptic connections and for screening for agents that protect synaptic function.  相似文献   

5.
In the adult mammalian brain, the ability to minimize secondary cell death after injury, and to repair nervous tissue through generation of new neurons, is severely compromised. By contrast, certain taxa of non-mammalian vertebrates possess an enormous potential for regeneration. Examination of one of these taxa, teleost fish, has revealed a close link between this phenomenon and constitutive adult neurogenesis. Key factors mediating successful regeneration appear to be: elimination of damaged cells by apoptosis, instead of necrosis; activation of mechanisms that prevent the occurrence of secondary cell death; increased production of new neurons that replace neurons lost to injury; and activation of developmental mechanisms that mediate directed migration of the new cells to the site of injury, the differentiation of the young cells, and their integration into the existing neural network. Comparative analysis has suggested that constitutive adult neurogenesis is a primitive vertebrate trait, the main function of which has been to ensure a numerical matching between muscle fibers/sensory receptor cells and central elements involved in motor control/processing of sensory information associated with these peripheral elements. It is hypothesized that, when in the course of the evolution of mammals a major shift in the growth pattern from hyperplasia to hypertrophy took place, the number of neurogenic brain regions and new neurons markedly decreased. As a consequence, the potential for neuronal regeneration was greatly reduced, but remnants of neurogenic areas have persisted in the adult mammalian brain in form of quiescent stem cells. It is likely that the study of regeneration-competent taxa will provide important information on how to activate intrinsic mechanisms for successful brain regeneration in humans.  相似文献   

6.
This study examines the regulation of the number of electromotor neurons during postnatal growth of the spinal cord in the gymnotiform teleost Sternarchus albifrons. It specifically asks whether a large overproduction of electromotor neurons and a wave of cell death, similar to those occurring during spinal cord regeneration in this species, play a role in the on-going growth at the caudal tip of the normal spinal cord. Neurons are produced from ependymal precursors at the caudal end of the spinal cord during both normal growth in the adult and regeneration of the spinal cord in this species. Previous studies have demonstrated that during spinal cord regeneration after amputation of the tail in Sternarchus, there is an initial massive (up to fivefold) overproduction of electromotor neurons, followed by a wave of cell death which reduces the number of these neurons to the normal level. In the present study, transverse sections through the caudalmost spinal segment of normal adult Sternarchus were examined. Proceeding rostrally from the caudal tip of the cord, the number of electromotor neurons increases monotonically to reach the normal number at a site 4-5 mm rostral to the caudal tip. Neither a massive overproduction of electromotor neurons nor a wave of neuronal death are observed during on-going growth of the normal spinal cord. The mechanisms by which the neuronal number is modulated are therefore different in the on-going normal growth of spinal cord versus regeneration of spinal cord in this species.  相似文献   

7.
Spinal cord injury results in progressive waves of secondary injuries, cascades of noxious pathological mechanisms that substantially exacerbate the primary injury and the resultant permanent functional deficits. Secondary injuries are associated with inflammation, excessive cytokine release, and cell apoptosis. The purine nucleoside guanosine has significant trophic effects and is neuroprotective, antiapoptotic in vitro, and stimulates nerve regeneration. Therefore, we determined whether systemic administration of guanosine could protect rats from some of the secondary effects of spinal cord injury, thereby reducing neurological deficits. Systemic administration of guanosine (8 mg/kg per day, i.p.) for 14 consecutive days, starting 4 h after moderate spinal cord injury in rats, significantly improved not only motor and sensory functions, but also recovery of bladder function. These improvements were associated with reduction in the inflammatory response to injury, reduction of apoptotic cell death, increased sparing of axons, and preservation of myelin. Our data indicate that the therapeutic action of guanosine probably results from reducing inflammation resulting in the protection of axons, oligodendrocytes, and neurons and from inhibiting apoptotic cell death. These data raise the intriguing possibility that guanosine may also be able to reduce secondary pathological events and thus improve functional outcome after traumatic spinal cord injury in humans.  相似文献   

8.
Notch signaling inhibits axon regeneration   总被引:1,自引:0,他引:1  
El Bejjani R  Hammarlund M 《Neuron》2012,73(2):268-278
Many neurons have limited capacity to regenerate their axons after injury. Neurons in the mammalian central nervous system do not regenerate, and even neurons in the peripheral nervous system often fail to regenerate to their former targets. This failure is likely due in part to pathways that actively restrict regeneration; however, only a few factors that limit regeneration are known. Here, using single-neuron analysis of regeneration in?vivo, we show that Notch/lin-12 signaling inhibits the regeneration of mature C.?elegans neurons. Notch signaling suppresses regeneration by acting autonomously in the injured cell to prevent growth cone formation. The metalloprotease and gamma-secretase cleavage events that lead to Notch activation during development are also required for its activity in regeneration. Furthermore, blocking Notch activation immediately after injury improves regeneration. Our results define a postdevelopmental role for the Notch pathway as a repressor of axon regeneration in?vivo.  相似文献   

9.
P2X7 receptor inhibition improves recovery after spinal cord injury   总被引:21,自引:0,他引:21  
Secondary injury exacerbates the extent of spinal cord insults, yet the mechanistic basis of this phenomenon has largely been unexplored. Here we report that broad regions of the peritraumatic zone are characterized by a sustained process of pathologic, high ATP release. Spinal cord neurons expressed P2X7 purine receptors (P2X7R), and exposure to ATP led to high-frequency spiking, irreversible increases in cytosolic calcium and cell death. To assess the potential effect of P2X7R blockade in ameliorating acute spinal cord injury (SCI), we delivered P2X7R antagonists OxATP or PPADS to rats after acute impact injury. We found that both OxATP and PPADS significantly improved functional recovery and diminished cell death in the peritraumatic zone. These observations demonstrate that SCI is associated with prolonged purinergic receptor activation, which results in excitotoxicity-based neuronal degeneration. P2X7R antagonists inhibit this process, reducing both the histological extent and functional sequelae of acute SCI.  相似文献   

10.
In glutamate-mediated excitatory neuronal cell death, immunosuppressants (FK506, Cys-A) are powerful agents that protect neurons from apoptosis. Immunosuppressants inhibit two types of enzyme, calcium/calmodulin-dependent protein phosphatase (calcineurin: CaN), and peptidyl-prolyl cis-trans-isomerase (PPIase) activity such as the FKBP family. In this study, we used a protein transduction approach to determine the functional role of CaN and to produce a potential therapeutic agent for glutamate-mediated neuronal cell death. We created a novel cell-permeable CaN autoinhibitory peptide using the 11 arginine protein transduction domain. This peptide was highly efficient at transducing into primary culture neurons, potently inhibited CaN phosphatase activities, and inhibited glutamate-mediated neuronal cell death. These results showed that CaN plays an important role in excitatory neuronal cell death and cell-permeable CaN autoinhibitory peptide could be a new drug to protect neurons from excitatory neuronal death.  相似文献   

11.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.  相似文献   

12.
Activation of caspases is an essential step toward initiating apoptotic cell death. During metamorphosis of Drosophila melanogaster, many larval neurons are programmed for elimination to establish an adult central nervous system (CNS) as well as peripheral nervous system (PNS). However, their neuronal functions have remained mostly unknown due to the lack of proper tools to identify them. To obtain detailed information about the neurochemical phenotypes of the doomed larval neurons and their timing of death, we generated a new GFP-based caspase sensor (Casor) that is designed to change its subcellular position from the cell membrane to the nucleus following proteolytic cleavage by active caspases. Ectopic expression of Casor in vCrz and bursicon, two different peptidergic neuronal groups that had been well-characterized for their metamorphic programmed cell death, showed clear nuclear translocation of Casor in a caspase-dependent manner before their death. We found similar events in some cholinergic neurons from both CNS and PNS. Moreover, Casor also reported significant caspase activities in the ventral and dorsal common excitatory larval motoneurons shortly after puparium formation. These motoneurons were previously unknown for their apoptotic fate. Unlike the events seen in the neurons, expression of Casor in non-neuronal cell types, such as glial cells and S2 cells, resulted in the formation of cytoplasmic aggregates, preventing its use as a caspase sensor in these cell types. Nonetheless, our results support Casor as a valuable molecular tool not only for identifying novel groups of neurons that become caspase-active during metamorphosis but also for monitoring developmental timing and cytological changes within the dying neurons.  相似文献   

13.
Metamorphosis of the central nervous system of Drosophila   总被引:2,自引:0,他引:2  
The study of the metamorphosis of the central nervous system of Drosophila focused on the ventral CNS. Many larval neurons are conserved through metamorphosis but they show pronounced remodeling of both central and peripheral processes. In general, transmitter expression appears to be conserved through metamorphosis but there are some examples of possible changes. Large numbers of new, adult-specific neurons are added to this basic complement of persisting larval cells. These cells are produced during larval life by embryonic neuroblasts that had persisted into the larval stage. These new neurons arrest their development soon after their birth but then mature into functional neurons during metamorphosis. Programmed cell death is also important for sculpting the adult CNS. One round of cell death occurs shortly after pupariation and a second one after the emergence of the adult fly.  相似文献   

14.
In contrast to mammals, teleost fish exhibit an enormous potential to regenerate adult spinal cord tissue after injury. However, the mechanisms mediating this ability are largely unknown. Here, we analyzed the major processes underlying structural and functional regeneration after amputation of the caudal portion of the spinal cord in Apteronotus leptorhynchus, a weakly electric teleost. After a transient wave of apoptotic cell death, cell proliferation started to increase 5 days after the lesion and persisted at high levels for at least 50 days. New cells differentiated into neurons, glia, and ependymal cells. Retrograde tract tracing revealed axonal re-growth and innervation of the regenerate. Functional regeneration was demonstrated by recovery of the amplitude of the electric organ discharge, a behavior generated by spinal motoneurons. Computer simulations indicated that the observed rates of apoptotic cell death and cell proliferation can adequately explain the re-growth of the spinal cord. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Basic fibroblast growth factor (FGF-2) is expressed in the peripheral nervous system and is up-regulated after nerve lesion. It has been demonstrated that administration of FGF-2 protects neurons from injury-induced cell death and promotes axonal regrowth. Using transgenic mice over-expressing FGF-2 (TgFGF-2), we addressed the importance of endogenously generated FGF-2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild-type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF-2. Morphometric evaluation of intact nerves from TgFGF-2 mice revealed no difference in number and size of myelinated fibers compared to wild-type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF-2 over-expression on Schwann cell proliferation during the early regeneration process, we used BrdU-labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild-types. We propose that endogenously synthesized FGF-2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination.  相似文献   

16.
Tuning cell fate     
《Organogenesis》2013,9(2):231-240
  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the death of motor neurons. A fundamental pathogenesis of ALS is the prolonged cell stress in neurons, which is caused by either accumulation of protein aggregates or reactive oxygen species. However, the mechanistic link between stress sensing and cell death is unsettled. Here, we identify that miR‐183‐5p, a neuron‐enriched miRNA, couples stress sensing and cell death programming in ALS. miR‐183‐5p is immediately induced by hydrogen peroxide, tunicamycin or TNF‐α in neurons. The overexpression of miR‐183‐5p increases neuron survival under stress conditions, whereas its knockdown causes neuron death. miR‐183‐5p coordinates apoptosis and necroptosis pathways by directly targeting PDCD4 and RIPK3, and thus protects neurons against cell death under stress conditions. The consistent reduction of miR‐183‐5p in ALS patients and mouse models enhances the notion that miR‐183‐5p is a central regulator of motor neuron survival under stress conditions. Our study supplements current understanding of the mechanistic link between cell stress and death/survival, and provides novel targets for clinical interventions of ALS.  相似文献   

18.
神经再生(Neurogenesis)是指具有自我更新能力的神经干细胞(Neural Stem Cells,NSCs)经过迁移、增殖,最终分化为具有特定功能的神经细胞的过程。以往人们认为,神经再生只存在于胚胎期或外周神经系统,近几年发现,在成年动物的中枢神经系统也存在神经再生,研究发现侧脑室室管膜下区(SVZ)是神经再生发生的主要区域之一,产生新的神经元和神经胶质细胞通过RMS通路运输至嗅球进而对嗅觉损伤部分进行修复。本文主要从成年神经再生的发展、神经再生与疾病的关系、神经再生的过程等方面进行综述。  相似文献   

19.
20.
Sandhoff disease, a neurodegenerative disorder characterized by the intracellular accumulation of GM2 ganglioside, is caused by mutations in the hexosaminidase beta-chain gene resulting in a hexosaminidase A (alphabeta) and B (betabeta) deficiency. A bicistronic lentiviral vector encoding both the hexosaminidase alpha and beta chains (SIV.ASB) has previously been shown to correct the beta-hexosaminidase deficiency and to reduce GM2 levels both in transduced and cross-corrected human Sandhoff fibroblasts. Recent advances in determining the neuropathophysiological mechanisms in Sandhoff disease have shown a mechanistic link between GM2 accumulation, neuronal cell death, reduction of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) activity, and axonal outgrowth. To examine the ability of the SIV.ASB vector to reverse these pathophysiological events, hippocampal neurons from embryonic Sandhoff mice were transduced with the lentivector. Normal axonal growth rates were restored, as was the rate of Ca(2+) uptake via the SERCA and the sensitivity of the neurons to thapsigargin-induced cell death, concomitant with a decrease in GM2 and GA2 levels. Thus, we have demonstrated that the bicistronic vector can reverse the biochemical defects and down-stream consequences in Sandhoff neurons, reinforcing its potential for Sandhoff disease in vivo gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号