首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
内质网相关蛋白降解(ER-associated protein degradation,或ER-associated degradation,ERAD)是真核细胞蛋白质质量控制的重要途径,它承担着对错误折叠蛋白的鉴别、分检和降解,清除无功能蛋白在细胞内的积累。ERAD过程包括错误折叠蛋白质的识别、蛋白质从ER向细胞基质逆向转运和蛋白质在细胞基质中的降解三个步骤。ERAD与人类的某些疾病密切相关,有些病毒能巧妙利用ERAD逃遁宿主免疫监控和攻击。  相似文献   

2.
Endoplasmic reticulum (ER)‐associated degradation (ERAD) is part of the ER protein quality‐control system (ERQC), which is critical for the conformation fidelity of most secretory and membrane proteins in eukaryotic organisms. ERAD is thought to operate in plants with core machineries highly conserved to those in human and yeast; however, little is known about the plant ERAD system. Here we report the characterization of a close homolog of human OTUB1 in Arabidopsis thaliana, designated as AtOTU1. AtOTU1 selectively hydrolyzes several types of ubiquitin chains and these activities depend on its conserved protease domain and/or the unique N‐terminus. The otu1 null mutant is sensitive to high salinity stress, and particularly agents that cause protein misfolding. It turns out that AtOTU1 is required for the processing of known plant ERAD substrates such as barley powdery mildew O (MLO) alleles by virtue of its association with the CDC48 complex through its N‐terminal region. These observations collectively define AtOTU1 as an OTU domain‐containing deubiquitinase involved in Arabidopsis ERAD.  相似文献   

3.
The protein quality control system in the endoplasmic reticulum (ER) ensures that only properly folded proteins are deployed throughout the cells. When nonnative proteins accumulate in the ER, the unfolded protein response is triggered to limit further accumulation of nonnative proteins and the ER is cleared of accumulated nonnative proteins by the ER-associated degradation (ERAD). In the yeast ER, aberrant nonnative proteins are mainly directed for the ERAD, but a distinct fraction of them instead receive O-mannosylation. In order to test whether O-mannosylation might also be a mechanism to process aberrant proteins in the ER, here we analyzed the effect of O-mannosylation on two kinds of model aberrant proteins, a series of N-glycosylation site mutants of prepro-alpha-factor and a pro-region-deleted derivative of Rhizopus niveus aspartic proteinase-I (Deltapro) both in vitro and in vivo. O-Mannosylation increases solubilities of the aberrant proteins and renders them less dependent on the ER chaperone, BiP, for being soluble. The release from ER chaperones allows the aberrant proteins to exit out of the ER for the normal secretory pathway transport. When the gene for Pmt2p, responsible for the O-mannosylation of these aberrant proteins, and that for the ERAD were simultaneously deleted, the cell exhibited enhanced unfolded protein response. O-Mannosylation may therefore function as a fail-safe mechanism for the ERAD by solubilizing the aberrant proteins that overflowed from the ERAD pathway and reducing the load for ER chaperones.  相似文献   

4.
Liu L  Cui F  Li Q  Yin B  Zhang H  Lin B  Wu Y  Xia R  Tang S  Xie Q 《Cell research》2011,21(6):957-969
Eukaryotic organisms have quality-control mechanisms that allow misfolded or unassembled proteins to be retained in the endoplasmic reticulum (ER) and subsequently degraded by ER-associated degradation (ERAD). The ERAD pathway is well studied in yeast and mammals; however, the biological functions of plant ERAD have not been reported. Through molecular and cellular biological approaches, we found that ERAD is necessary for plants to overcome salt stress. Upon salt treatment ubiquitinated proteins increased in plant cells, especially unfolded proteins that quickly accumulated in the ER and subsequently induced ER stress responses. Defect in HRD3A of the HRD1/HRD3 complex of the ERAD pathway resulted in alteration of the unfolded protein response (UPR), increased plant sensitivity to salt, and retention of ERAD substrates in plant cells. Furthermore, we demonstrated that Ca(2+) release from the ER is involved in the elevation of UPR and reactive oxygen species (ROS) participates the ERAD-related plant salt response pathway.  相似文献   

5.
Misfolded proteins produced in the endoplasmic reticulum (ER) are degraded by a mechanism, the ER-associated degradation (ERAD). Here we report establishment of the experimental system to analyze the ERAD in plant cells. Carboxypeptidase Y (CPY) is a vacuolar enzyme and its mutant CPY∗ is degraded by the ERAD in yeast. Since Arabidopsis thaliana has AtCPY, an ortholog of yeast CPY, we constructed and expressed fusion proteins consisting of AtCPY and GFP and of AtCPY∗, which carries a mutation homologous to yeast CPY∗, and GFP in A. thaliana cells. While AtCPY-GFP was efficiently transported to the vacuole, AtCPY∗-GFP was retained in the ER to be degraded in proteasome- and Cdc48-dependent manners. We also found that AtCPY∗-GFP was degraded by the ERAD in yeast cells, but that its single N-glycan did not function as a degradation signal in yeast or plant cells. Therefore, AtCPY∗-GFP can be used as a marker protein to analyze the ERAD pathway, likely for nonglycosylated substrates, in plant cells.  相似文献   

6.
7.
In the endoplasmic reticulum, immature polypeptides coincide with terminally misfolded proteins. Consequently, cells need a well-balanced quality control system, which decides about the fate of individual proteins and maintains protein homeostasis. Misfolded and unassembled proteins are sent for destruction via the endoplasmic reticulum-associated degradation (ERAD) machinery to prevent the accumulation of potentially toxic protein aggregates. Here, we report the identification of Arabidopsis thaliana OS9 as a component of the plant ERAD pathway. OS9 is an ER-resident glycoprotein containing a mannose-6-phosphate receptor homology domain, which is also found in yeast and mammalian lectins involved in ERAD. OS9 fused to the C-terminal domain of YOS9 can complement the ERAD defect of the corresponding yeast Δyos9 mutant. An A. thaliana OS9 loss-of-function line suppresses the severe growth phenotype of the bri1-5 and bri1-9 mutant plants, which harbour mutated forms of the brassinosteroid receptor BRI1. Co-immunoprecipitation studies demonstrated that OS9 associates with Arabidopsis SEL1L/HRD3, which is part of the plant ERAD complex and with the ERAD substrates BRI1-5 and BRI1-9, but only the binding to BRI1-5 occurs in a glycan-dependent way. OS9-deficiency results in activation of the unfolded protein response and reduces salt tolerance, highlighting the role of OS9 during ER stress. We propose that OS9 is a component of the plant ERAD machinery and may act specifically in the glycoprotein degradation pathway.  相似文献   

8.
Membrane and secretory proteins fold in the endoplasmic reticulum (ER), and misfolded proteins may be retained and targeted for ER-associated protein degradation (ERAD). To elucidate the mechanism by which an integral membrane protein in the ER is degraded, we studied the fate of the cystic fibrosis transmembrane conductance regulator (CFTR) in the yeast Saccharomyces cerevisiae. Our data indicate that CFTR resides in the ER and is stabilized in strains defective for proteasome activity or deleted for the ubiquitin-conjugating enzymes Ubc6p and Ubc7p, thus demonstrating that CFTR is a bona fide ERAD substrate in yeast. We also found that heat shock protein 70 (Hsp70), although not required for the degradation of soluble lumenal ERAD substrates, is required to facilitate CFTR turnover. Conversely, calnexin and binding protein (BiP), which are required for the proteolysis of ER lumenal proteins in both yeast and mammals, are dispensable for the degradation of CFTR, suggesting unique mechanisms for the disposal of at least some soluble and integral membrane ERAD substrates in yeast.  相似文献   

9.
We developed a growth test to screen for yeast mutants defective in endoplasmic reticulum (ER) quality control and associated protein degradation (ERAD) using the membrane protein CTL*, a chimeric derivative of the classical ER degradation substrate CPY*. In a genomic screen of approximately 5,000 viable yeast deletion mutants, we identified genes necessary for ER quality control and degradation. Among the new gene products, we identified Dsk2p and Rad23p. We show that these two proteins are probably delivery factors for ubiquitinated ER substrates to the proteasome, following their removal from the membrane via the Cdc48-Ufd1-Npl4p complex. In contrast to the ERAD substrate CTG*, proteasomal degradation of a cytosolic CPY*-GFP fusion is not dependent on Dsk2p and Rad23p, indicating pathway specificity for both proteins. We propose that, in certain degradation pathways, Dsk2p, Rad23p and the trimeric Cdc48 complex function together in the delivery of ubiquitinated proteins to the proteasome, avoiding malfolded protein aggregates in the cytoplasm.  相似文献   

10.
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a quality control system that removes misfolded proteins from the ER. ERAD substrates are channelled from the ER via a proteinacious pore to the cytosolic ubiquitin-proteasome system - a process involving dedicated ubiquitin ligases and the chaperone-like AAA ATPase Cdc48 (also known as p97). How the activities of these proteins are coupled remains unclear. Here we show that the UBX domain protein Ubx2 is an integral ER membrane protein that recruits Cdc48 to the ER. Moreover, Ubx2 mediates binding of Cdc48 to the ubiquitin ligases Hrd1 and Doa10, and to ERAD substrates. In addition, Ubx2 and Cdc48 interact with Der1 and Dfm1, yeast homologues of the putative dislocation pore protein Derlin-1 (refs 11-13). Lack of Ubx2 causes defects in ERAD that are exacerbated under stress conditions. These findings are consistent with a model in which Ubx2 coordinates the assembly of a highly efficient ERAD machinery at the ER membrane.  相似文献   

11.
ER-associated protein degradation (ERAD) is a protein quality control system of ER, which eliminates misfolded proteins by proteasome-dependent degradation and ensures export of only properly folded proteins from ER. Herp, an ER membrane protein upregulated by ER stress, is implicated in regulation of ERAD. In the present study, we show that Herp interacts with members of the ubiquilin family, which function as a shuttle factor to deliver ubiquitinated substrates to the proteasome for degradation. Knockdown of ubiquilin expression by small interfering RNA stabilized the ERAD substrate CD3δ, whereas it did not alter or increased degradation of non-ERAD substrates tested. CD3δ was stabilized by overexpressed Herp mutants which were capable of binding to ubiquilins but were impaired in ER membrane targeting by deletion of the transmembrane domain. Our data suggest that Herp binding to ubiquilin proteins plays an important role in the ERAD pathway and that ubiquilins are specifically involved in degradation of only a subset of ubiquitinated targets, including Herp-dependent ERAD substrates.  相似文献   

12.
Endoplasmic reticulum–mediated quality control (ERQC) is a well-studied process in yeast and mammals that retains and disposes misfolded/unassembled polypeptides. By contrast, how plants exert quality control over their secretory proteins is less clear. Here, we report that a mutated brassinosteroid receptor, bri1-5, that carries a Cys69Tyr mutation, is retained in the ER by an overvigilant ERQC system involving three different retention mechanisms. We demonstrate that bri1-5 interacts with two ER chaperones, calnexin and binding protein (BiP), and is degraded by a proteasome-independent endoplasmic reticulum–associated degradation (ERAD). Mutations in components of the calnexin/calreticulin cycle had little effect on the fidelity of the Arabidopsis thaliana ERQC for bri1-5 retention. By contrast, overexpression of bri1-5, treatment with an ERAD inhibitor, RNA interference–mediated BiP silencing, or simultaneous mutations of Cys-69 and its partner Cys-62 can mitigate this quality control, resulting in significant suppression of the bri1-5 phenotype. Thus, bri1-5 is an excellent model protein to investigate plant ERQC/ERAD in a model organism.  相似文献   

13.
The endoplasmic reticulum (ER) represents the first compartment into which nascent secreted proteins traffic, and not coincidentally the ER lumen houses a high concentration of factors that facilitate protein folding, such as molecular chaperones. To off-set the potentially lethal consequences of mis-folded secreted protein accumulation, aberrant proteins may be selected for degradation via a process known as ER associated degradation (ERAD). After their selection ERAD substrates are retro-translocated back to the cytoplasm and then degraded by the 26S proteasome. Key features of the selection, retro-translocation, and degradation steps that constitute the ERAD pathway were elucidated through the development of an in vitro ERAD assay. In this assay the fates of two yeast proteins can be distinguished after their translocation, or import into ER-derived microsomes. Whereas a wild type, glycosylated protein ("Gp(alpha)F") is stable, a non-glycosylated version of the same protein ("p(alpha)F") is rapidly degraded when microsomes containing radiolabeled forms of these substrates are incubated in cytosol and ATP. The purpose of this chapter is first to discuss the experimental findings from the use of the in vitro assay, and then to describe the assay in detail. Finally, future potential uses of the in vitro system are illustrated.  相似文献   

14.
Braun S  Jentsch S 《EMBO reports》2007,8(12):1176-1182
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a specialized activity of the ubiquitin-proteasome system that is involved in clearing the ER of aberrant proteins and regulating the levels of specific ER-resident proteins. Here we show that the yeast ER-SNARE Ufe1, a syntaxin (Qa-SNARE) involved in ER membrane fusion and retrograde transport from the Golgi to the ER, is prone to degradation by an ERAD-like mechanism. Notably, Ufe1 is protected against degradation through binding to Sly1, a known SNARE regulator of the Sec1-Munc18 (SM) protein family. This mechanism is specific for Ufe1, as the stability of another Sly1 partner, the Golgi Qa-SNARE Sed5, is not influenced by Sly1 interaction. Thus, our findings identify Sly1 as a discriminating regulator of SNARE levels and indicate that Sly1-controlled ERAD might regulate the balance between different Qa-SNARE proteins.  相似文献   

15.
The endoplasmic reticulum (ER) harbors a protein quality control system, which monitors protein folding in the ER. Elimination of malfolded proteins is an important function of this protein quality control. Earlier studies with various soluble and transmembrane ER-associated degradation (ERAD) substrates revealed differences in the ER degradation machinery used. To unravel the nature of these differences we generated two type I membrane ERAD substrates carrying malfolded carboxypeptidase yscY (CPY*) as the ER-luminal ERAD recognition motif. Whereas the first, CT* (CPY*-TM), has no cytoplasmic domain, the second, CTG*, has the green fluorescent protein present in the cytosol. Together with CPY*, these three substrates represent topologically diverse malfolded proteins, degraded via ERAD. Our data show that degradation of all three proteins is dependent on the ubiquitin-proteasome system involving the ubiquitin-protein ligase complex Der3/Hrd1p-Hrd3p, the ubiquitin conjugating enzymes Ubc1p and Ubc7p, as well as the AAA-ATPase complex Cdc48-Ufd1-Npl4 and the 26S proteasome. In contrast to soluble CPY*, degradation of the membrane proteins CT* and CTG* does not require the ER proteins Kar2p (BiP) and Der1p. Instead, CTG* degradation requires cytosolic Hsp70, Hsp40, and Hsp104p chaperones.  相似文献   

16.
Ubiquitination is used to target both normal proteins for specific regulated degradation and misfolded proteins for purposes of quality control destruction. Ubiquitin ligases, or E3 proteins, promote ubiquitination by effecting the specific transfer of ubiquitin from the correct ubiquitin-conjugating enzyme, or E2 protein, to the target substrate. Substrate specificity is usually determined by specific sequence determinants, or degrons, in the target substrate that are recognized by the ubiquitin ligase. In quality control, however, a potentially vast collection of proteins with characteristic hallmarks of misfolding or misassembly are targeted with high specificity despite the lack of any sequence similarity between substrates. In order to understand the mechanisms of quality control ubiquitination, we have focused our attention on the first characterized quality control ubiquitin ligase, the HRD complex, which is responsible for the endoplasmic reticulum (ER)-associated degradation (ERAD) of numerous ER-resident proteins. Using an in vivo cross-linking assay, we directly examined the association of the separate HRD complex components with various ERAD substrates. We have discovered that the HRD ubiquitin ligase complex associates with both ERAD substrates and stable proteins, but only mediates ubiquitin-conjugating enzyme association with ERAD substrates. Our studies with the sterol pathway-regulated ERAD substrate Hmg2p, an isozyme of the yeast cholesterol biosynthetic enzyme HMG-coenzyme A reductase (HMGR), indicated that the HRD complex discerns between a degradation-competent "misfolded" state and a stable, tightly folded state. Thus, it appears that the physiologically regulated, HRD-dependent degradation of HMGR is effected by a programmed structural transition from a stable protein to a quality control substrate.  相似文献   

17.
Secreted proteins are synthesized at the endoplasmic reticulum (ER), and a quality control mechanism in the ER is essential to maintain secretory pathway homeostasis. Newly synthesized soluble and integral membrane secreted proteins fold into their native conformations with the aid of ER molecular chaperones before they are transported to post-ER compartments. However, terminally mis-folded proteins may be retained in the ER and degraded by a process called ER-associated degradation (ERAD). Recent studies using yeast have shown that molecular chaperones both in the ER and in the cytosol play key roles during the ERAD of mis-folded proteins. One important role for chaperones during ERAD is to prevent substrate protein aggregation. Substrate selection is another important role for molecular chaperones during ERAD.  相似文献   

18.
We undertook a growth-based screen exploiting the degradation of CTL*, a chimeric membrane-bound ERAD substrate derived from soluble lumenal CPY*. We screened the Saccharomyces cerevisiae genomic deletion library containing approximately 5000 viable strains for mutants defective in endoplasmic reticulum (ER) protein quality control and degradation (ERAD). Among the new gene products we identified Yos9p, an ER-localized protein previously involved in the processing of GPI anchored proteins. We show that deficiency in Yos9p affects the degradation only of glycosylated ERAD substrates. Degradation of non-glycosylated substrates is not affected in cells lacking Yos9p. We propose that Yos9p is a lectin or lectin-like protein involved in the quality control of N-glycosylated proteins. It may act sequentially or in concert with the ERAD lectin Htm1p/Mnl1p (EDEM) to prevent secretion of malfolded glycosylated proteins and deliver them to the cytosolic ubiquitin-proteasome machinery for elimination.  相似文献   

19.
The endoplasmic reticulum (ER) harbors elaborate quality control mechanisms to ensure proper folding and post-translational modifications of polypeptides targeted to this organelle. Once an aberrant protein is detected, it is dislocated from the ER and routed to the proteasome for destruction. Autophagy has been recently implicated in the elevation of the ER stress response; however, the involvement of this pathway in selective removal of ER-associated degradation (ERAD) substrates has not been demonstrated. In the present study, we show that an ER membrane lesion, associated with the accumulation of the yeast ERAD-M substrate 6Myc-Hmg2p elicits the recruitment of Atg8 and elements of the cytosol to vacuole targeting (CVT) to the membrane, leading to attenuation in the degradation process. Deletion of peptide:N-glycanase (PNG1) stabilizes this association, a process accompanied by slowdown of 6Myc-Hmg2p degradation. Truncation of the unstructured C-terminal 23 amino acids of 6Myc-Hmg2p rendered its degradation PNG1-independent and allowed its partial delivery to the vacuole in an autophagy-dependent manner. These findings demonstrate a new conduit for the selective vacuolar/lysosomal removal of ERAD misfolded proteins by an autophagy-related machinery acting concomitantly with the proteasome.  相似文献   

20.
Misfolded proteins in the endoplasmic reticulum (ER) are selected for ER‐associated degradation (ERAD). More than 60 disease‐associated proteins are substrates for the ERAD pathway due to the presence of missense or nonsense mutations. In yeast, the Hsp104 molecular chaperone disaggregates detergent‐insoluble ERAD substrates, but the spectrum of disease‐associated ERAD substrates that may be aggregation prone is unknown. To determine if Hsp104 recognizes aggregation‐prone ERAD substrates associated with human diseases, we developed yeast expression systems for a hydrophobic lipid‐binding protein, apolipoprotein B (ApoB), along with a chimeric protein harboring a nucleotide‐binding domain from the cystic fibrosis transmembrane conductance regulator (CFTR) into which disease‐causing mutations were introduced. We discovered that Hsp104 facilitates the degradation of ER‐associated ApoB as well as a truncated CFTR chimera in which a premature stop codon corresponds to a disease‐causing mutation. Chimeras containing a wild‐type version of the CFTR domain or a different mutation were stable and thus Hsp104 independent. We also discovered that the detergent solubility of the unstable chimera was lower than the stable chimeras, and Hsp104 helped retrotranslocate the unstable chimera from the ER, consistent with disaggregase activity. To determine why the truncated chimera was unstable, we next performed molecular dynamics simulations and noted significant unraveling of the CFTR nucleotide‐binding domain. Because human cells lack Hsp104, these data indicate that an alternate disaggregase or mechanism facilitates the removal of aggregation‐prone, disease‐causing ERAD substrates in their native environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号