首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In comparison to other complex disease traits, alcoholism and alcohol abuse are influenced by the combined effects of many genes that alter susceptibility, phenotypic expression and associated morbidity, respectively. Many genetic studies, in both animal models and humans, have identified genetic intervals containing genes that influence alcoholism or behavioral responses to ethanol. Concurrently, a growing number of microarray studies have identified gene expression differences related to ethanol drinking or other ethanol behaviors. However, concerns about the statistical power of these experiments, combined with the complexity of the underlying phenotypes, have greatly hampered the identification of candidate genes underlying ethanol behaviors. Meta-analysis approaches using recent compilations of large datasets of microarray, behavioral and genetic data promise improved statistical power for detecting the genes or gene networks affecting ethanol behaviors and other complex traits.  相似文献   

2.
Combining information across genes in the statistical analysis of microarray data is desirable because of the relatively small number of data points obtained for each individual gene. Here we develop an estimator of the error variance that can borrow information across genes using the James-Stein shrinkage concept. A new test statistic (FS) is constructed using this estimator. The new statistic is compared with other statistics used to test for differential expression: the gene-specific F test (F1), the pooled-variance F statistic (F3), a hybrid statistic (F2) that uses the average of the individual and pooled variances, the regularized t-statistic, the posterior odds statistic B, and the SAM t-test. The FS-test shows best or nearly best power for detecting differentially expressed genes over a wide range of simulated data in which the variance components associated with individual genes are either homogeneous or heterogeneous. Thus FS provides a powerful and robust approach to test differential expression of genes that utilizes information not available in individual gene testing approaches and does not suffer from biases of the pooled variance approach.  相似文献   

3.
Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, has raised concerns about the reliability of this technology. The MicroArray Quality Control (MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues. Expression data on four titration pools from two distinct reference RNA samples were generated at multiple test sites using a variety of microarray-based and alternative technology platforms. Here we describe the experimental design and probe mapping efforts behind the MAQC project. We show intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed. This study provides a resource that represents an important first step toward establishing a framework for the use of microarrays in clinical and regulatory settings.  相似文献   

4.
Bayesian hierarchical error model for analysis of gene expression data   总被引:1,自引:0,他引:1  
MOTIVATION: Analysis of genome-wide microarray data requires the estimation of a large number of genetic parameters for individual genes and their interaction expression patterns under multiple biological conditions. The sources of microarray error variability comprises various biological and experimental factors, such as biological and individual replication, sample preparation, hybridization and image processing. Moreover, the same gene often shows quite heterogeneous error variability under different biological and experimental conditions, which must be estimated separately for evaluating the statistical significance of differential expression patterns. Widely used linear modeling approaches are limited because they do not allow simultaneous modeling and inference on the large number of these genetic parameters and heterogeneous error components on different genes, different biological and experimental conditions, and varying intensity ranges in microarray data. RESULTS: We propose a Bayesian hierarchical error model (HEM) to overcome the above restrictions. HEM accounts for heterogeneous error variability in an oligonucleotide microarray experiment. The error variability is decomposed into two components (experimental and biological errors) when both biological and experimental replicates are available. Our HEM inference is based on Markov chain Monte Carlo to estimate a large number of parameters from a single-likelihood function for all genes. An F-like summary statistic is proposed to identify differentially expressed genes under multiple conditions based on the HEM estimation. The performance of HEM and its F-like statistic was examined with simulated data and two published microarray datasets-primate brain data and mouse B-cell development data. HEM was also compared with ANOVA using simulated data. AVAILABILITY: The software for the HEM is available from the authors upon request.  相似文献   

5.
MOTIVATION: Most supervised classification methods are limited by the requirement for more cases than variables. In microarray data the number of variables (genes) far exceeds the number of cases (arrays), and thus filtering and pre-selection of genes is required. We describe the application of Between Group Analysis (BGA) to the analysis of microarray data. A feature of BGA is that it can be used when the number of variables (genes) exceeds the number of cases (arrays). BGA is based on carrying out an ordination of groups of samples, using a standard method such as Correspondence Analysis (COA), rather than an ordination of the individual microarray samples. As such, it can be viewed as a method of carrying out COA with grouped data. RESULTS: We illustrate the power of the method using two cancer data sets. In both cases, we can quickly and accurately classify test samples from any number of specified a priori groups and identify the genes which characterize these groups. We obtained very high rates of correct classification, as determined by jack-knife or validation experiments with training and test sets. The results are comparable to those from other methods in terms of accuracy but the power and flexibility of BGA make it an especially attractive method for the analysis of microarray cancer data.  相似文献   

6.
Doukas DJ 《Genetic testing》2003,7(4):315-321
As genetic testing becomes more commonplace, medicine will likely face both family and individual demands for access to, and control of, test result information. Past research has emphasized confidentiality concerns of the individual and contrasted these claims with the "need to know" by others to avoid harm. These confidentiality concerns, based on individual self-interest, are challenged by a singularly important aspect of genetic testing-familial responsibility. As patients are often motivated to obtain genetic testing by an array of "other-directed" considerations toward their own family (such as love, fiduciary responsibility, gratitude, etc.), an accounting of these concerns is warranted. Understanding the relevance of family relationships and obligations facilitates a fuller informed consent for genetic testing. Genetic counselors and geneticists engaging in genetic counseling can account for the concerns of both individuals and their families using the family covenant-a helpful, innovative model to address proactively boundaries of privacy and information sharing within the family. This model focuses on two areas of discussion: (1) the demarcation of the boundaries of confidentiality; and (2) the definition of "family." The family covenant helps genetics providers consider what information "should" be confidential, and with respect to whom.  相似文献   

7.
Identifying genes involved in complex neuropsychiatric disorders through classic human genetic approaches has proven difficult. To overcome that barrier, we have developed a translational approach called Convergent Functional Genomics (CFG), which cross-matches animal model microarray gene expression data with human genetic linkage data as well as human postmortem brain data and biological role data, as a Bayesian way of cross-validating findings and reducing uncertainty. Our approach produces a short list of high probability candidate genes out of the hundreds of genes changed in microarray datasets and the hundreds of genes present in a linkage peak chromosomal area. These genes can then be prioritized, pursued, and validated in an individual fashion using: (1) human candidate gene association studies and (2) cell culture and mouse transgenic models. Further bioinformatics analysis of groups of genes identified through CFG leads to insights into pathways and mechanisms that may be involved in the pathophysiology of the illness studied. This simple but powerful approach is likely generalizable to other complex, non-neuropsychiatric disorders, for which good animal models, as well as good human genetic linkage datasets and human target tissue gene expression datasets exist.  相似文献   

8.
9.
10.
MOTIVATION: This paper presents a global test to be used for the analysis of microarray data. Using this test it can be determined whether the global expression pattern of a group of genes is significantly related to some clinical outcome of interest. Groups of genes may be any size from a single gene to all genes on the chip (e.g. known pathways, specific areas of the genome or clusters from a cluster analysis). RESULT: The test allows groups of genes of different size to be compared, because the test gives one p-value for the group, not a p-value for each gene. Researchers can use the test to investigate hypotheses based on theory or past research or to mine gene ontology databases for interesting pathways. Multiple testing problems do not occur unless many groups are tested. Special attention is given to visualizations of the test result, focussing on the associations between samples and showing the impact of individual genes on the test result. AVAILABILITY: An R-package globaltest is available from http://www.bioconductor.org  相似文献   

11.
12.
Selective transcriptional profiling for trait-based eQTL mapping   总被引:2,自引:0,他引:2  
  相似文献   

13.
Unbiased pattern detection in microarray data series   总被引:1,自引:0,他引:1  
MOTIVATION: Following the advent of microarray technology in recent years, the challenge for biologists is to identify genes of interest from the thousands of genetic expression levels measured in each microarray experiment. In many cases the aim is to identify pattern in the data series generated by successive microarray measurements. RESULTS: Here we introduce a new method of detecting pattern in microarray data series which is independent of the nature of this pattern. Our approach provides a measure of the algorithmic compressibility of each data series. A series which is significantly compressible is much more likely to result from simple underlying mechanisms than series which are incompressible. Accordingly, the gene associated with a compressible series is more likely to be biologically significant. We test our method on microarray time series of yeast cell cycle and show that it blindly selects genes exhibiting the expected cyclic behaviour as well as detecting other forms of pattern. Our results successfully predict two independent non-microarray experimental studies.  相似文献   

14.
MOTIVATION: Recent advances in DNA microarray technologies have made it possible to measure the expression levels of thousands of genes simultaneously under different conditions. The data obtained by microarray analyses are called expression profile data. One type of important information underlying the expression profile data is the 'genetic network,' that is, the regulatory network among genes. Graphical Gaussian Modeling (GGM) is a widely utilized method to infer or test relationships among a plural of variables. RESULTS: In this study, we developed a method combining the cluster analysis with GGM for the inference of the genetic network from the expression profile data. The expression profile data of 2467 Saccharomyces cerevisiae genes measured under 79 different conditions (Eisen et al., PROC: Natl Acad. Sci. USA, 95, 14683-14868, 1998) were used for this study. At first, the 2467 genes were classified into 34 clusters by a cluster analysis, as a preprocessing for GGM. Then, the expression levels of the genes in each cluster were averaged for each condition. The averaged expression profile data of 34 clusters were subjected to GGM, and a partial correlation coefficient matrix was obtained as a model of the genetic network of S. cerevisiae. The accuracy of the inferred network was examined by the agreement of our results with the cumulative results of experimental studies.  相似文献   

15.
基因芯片与植物基因差异表达分析   总被引:5,自引:0,他引:5  
李同祥  王进科 《植物研究》2002,22(3):310-313
基因芯片为研究植物不同个体或物种之间以及同一个体在不同生长发育阶段、正常和疾病状态下基因表达的差异、某一性状多基因的协同作用,寻找和定位新的目的基因等方面带来了革命性的变革。与传统研究基因差异表达的方法相比,它具有微型化、用材少、快速、准确、灵敏度能高基、在因同等一研究方面已取得了显著的成绩,如拟南芥、酵母、水稻等。  相似文献   

16.
ABSTRACT: BACKGROUND: In the postgenome era, a prediction of response to treatment could lead to better dose selection for patients in radiotherapy. To identify a radiosensitive gene signature and elucidate related signaling pathways, four different microarray experiments were reanalyzed before radiotherapy. RESULTS: Radiosensitivity profiling data using clonogenic assay and gene expression profiling data from four published microarray platforms applied to NCI-60 cancer cell panel were used. The survival fraction at 2 Gy (SF2, range from 0 to 1) was calculated as a measure of radiosensitivity and a linear regression model was applied to identify genes or a gene set with a correlation between expression and radiosensitivity (SF2). Radiosensitivity signature genes were identified using significant analysis of microarrays (SAM) and gene set analysis was performed using a global test using linear regression model. Using the radiation-related signaling pathway and identified genes, a genetic network was generated. According to SAM, 31 genes were identified as common to all the microarray platforms and therefore a common radiosensitivity signature. In gene set analysis, functions in the cell cycle, DNA replication, and cell junction, including adherence and gap junctions were related to radiosensitivity. The integrin, VEGF, MAPK, p53, JAK-STAT and Wnt signaling pathways were overrepresented in radiosensitivity. Significant genes including ACTN1, CCND1, HCLS1, ITGB5, PFN2, PTPRC, RAB13, and WAS, which are adhesion-related molecules that were identified by both SAM and gene set analysis, and showed interaction in the genetic network with the integrin signaling pathway. CONCLUSIONS: Integration of four different microarray experiments and gene selection using gene set analysis discovered possible target genes and pathways relevant to radiosensitivity. Our results suggested that the identified genes are candidates for radiosensitivity biomarkers and that integrin signaling via adhesion molecules could be a target for radiosensitization.  相似文献   

17.
18.
MOTIVATION: In analyses of microarray data with a design of different biological conditions, ranking genes by their differential 'importance' is often desired so that biologists can focus research on a small subset of genes that are most likely related to the experiment conditions. Permutation methods are often recommended and used, in place of their parametric counterparts, due to the small sample sizes of microarray experiments and possible non-normality of the data. The recommendations, however, are based on classical knowledge in the hypothesis test setting. RESULTS: We explore the relationship between hypothesis testing and gene ranking. We indicate that the permutation method does not provide a metric for the distance between two underlying distributions. In our simulation studies permutation methods tend to be equally or less accurate than parametric methods in ranking genes. This is partially due to the discreteness of the permutation distributions, as well as the non-metric property. In data analysis the variability in ranking genes can be assessed by bootstrap. It turns out that the variability is much lower for permutation than parametric methods, which agrees with the known robustness of permutation methods to individual outliers in the data.  相似文献   

19.
Duarte CW  Zeng ZB 《Genetics》2011,187(3):955-964
Expression QTL (eQTL) studies involve the collection of microarray gene expression data and genetic marker data from segregating individuals in a population to search for genetic determinants of differential gene expression. Previous studies have found large numbers of trans-regulated genes (regulated by unlinked genetic loci) that link to a single locus or eQTL "hotspot," and it would be desirable to find the mechanism of coregulation for these gene groups. However, many difficulties exist with current network reconstruction algorithms such as low power and high computational cost. A common observation for biological networks is that they have a scale-free or power-law architecture. In such an architecture, highly influential nodes exist that have many connections to other nodes. If we assume that this type of architecture applies to genetic networks, then we can simplify the problem of genetic network reconstruction by focusing on discovery of the key regulatory genes at the top of the network. We introduce the concept of "shielding" in which a specific gene expression variable (the shielder) renders a set of other gene expression variables (the shielded genes) independent of the eQTL. We iteratively build networks from the eQTL to the shielder down using tests of conditional independence. We have proposed a novel test for controlling the shielder false-positive rate at a predetermined level by requiring a threshold number of shielded genes per shielder. Using simulation, we have demonstrated that we can control the shielder false-positive rate as well as obtain high shielder and edge specificity. In addition, we have shown our method to be robust to violation of the latent variable assumption, an important feature in the practical application of our method. We have applied our method to a yeast expression QTL data set in which microarray and marker data were collected from the progeny of a backcross of two species of Saccharomyces cerevisiae (Brem et al. 2002). Seven genetic networks have been discovered, and bioinformatic analysis of the discovered regulators and corresponding regulated genes has generated plausible hypotheses for mechanisms of regulation that can be tested in future experiments.  相似文献   

20.
High-density oligonucleotide arrays are widely used for analysis of gene expression on a genomic scale, but the generated data remain largely inaccessible for comparative analysis purposes. Similarity searches in databases with differentially expressed gene (DEG) lists may be used to assign potential functions to new genes and to identify potential chemical inhibitors/activators and genetic suppressors/enhancers. Although this is a very promising concept, it requires the compatibility and validity of the DEG lists to be significantly improved. Using Arabidopsis and human datasets, we have developed guidelines for the performance of similarity searches against databases that collect microarray data. We found that, in comparison with many other methods, a rank-product analysis achieves a higher degree of inter- and intra-laboratory consistency of DEG lists, and is advantageous for assessing similarities and differences between them. To support this concept, we developed a tool called MASTA (microarray overlap search tool and analysis), and re-analyzed over 600 Arabidopsis microarray expression datasets. This revealed that large-scale searches produce reliable intersections between DEG lists that prove to be useful for genetic analysis, thus aiding in the characterization of cellular and molecular mechanisms. We show that this approach can be used to discover unexpected connections and to illuminate unanticipated interactions between individual genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号