首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semicarbazide-sensitive amine oxidase (SSAO) is a multifunctional enzyme with different biological roles that depend on the tissue where it is expressed. Because SSAO activity is altered in several pathological conditions, we were interested in studying the possible regulation of the human enzyme activity. It has been previously reported that SSAO activity is increased in the presence of Dulbecco's modified Eagle medium (DMEM) in vitro. The aim of the present work was to investigate the effects of the different constituents of DMEM on human SSAO activity. We found that sodium bicarbonate was the only component able to mimic the enhancement of both human aorta and plasma SSAO activity in vitro, suggesting a possible physiological role of bicarbonate as an intrinsic modulator of the human enzyme. Failure to take this activating effect into account could also result in inaccuracies in the reported tissue activities of this enzyme.  相似文献   

2.
Semicarbazide-sensitive amine oxidase (SSAO) (E.C. 1.4.3.6) is a group of enzymes with as yet poorly understood function which is widely present in nature. The variation in methodology for determination of activity, differences in substrates used and in nomenclature have made it difficult to compare SSAO in different species and tissues. Since SSAO is implicated in the pathophysiology of diabetes mellitus and congestive heart failure, our aim was to analyse the importance and abundance of SSAO in human plasma and tissues compared to other mammals. In plasma of ten different mammals, Vmax values were found to vary more than 10,000-fold, while KM differed much less; in human plasma SSAO activity is relatively low. In some species more than one SSAO entity was present in plasma. SSAO activity was ubiquitous in tissues of human, rat and pig, but varied considerably, both between species and between tissues. In human tissues, SSAO activity is higher than in tissues from rat and pig. Relative to monoamine oxidase-B there is also wide variation in SSAO, with much higher relative activities in human than in rat and pig tissues. We conclude that in plasma, SSAO activity is highest in ruminants, while in tissues, SSAO activity is more prominently present in human than in rat and pig.  相似文献   

3.
Plasma semicarbazide-sensitive amine oxidase in human (patho)physiology   总被引:6,自引:0,他引:6  
Semicarbazide-sensitive amine oxidases (SSAO) are widely distributed enzymes, with as yet not fully elucidated functions and roles, present in many tissues but also circulating in plasma. The enzyme also functions as an adhesion molecule, the vascular adhesion protein-1. In healthy humans, plasma SSAO activity is constant from birth until 16 years of age, when it drops to lower values, gradually increasing again at advanced ages. When measuring SSAO activity, care should be taken to ensure proper preparation and storage conditions, and it should be realized that quite a few drugs unintentionally are good inhibitors, and sometimes even substrates, of SSAO. Under normal conditions SSAO activity is constant and inter-individual variation is small. In various pathophysiological conditions plasma SSAO activities are increased, most notably in diabetes mellitus (both type I and type II), in congestive heart failure and in cirrhotic liver inflammation. In patients with other vascular and inflammatory diseases plasma SSAO is normal, while it is low in children with congenital lung diseases. Interpretation of these changes is speculative, since source and regulation of plasma SSAO are as yet unknown. However, in two situations where the disease-causing process was ended (transplantation, delivery), plasma SSAO returned to normal. Many questions remain to be answered.  相似文献   

4.
5.
A strong induction of semicarbazide-sensitive amine oxidase (SSAO) has previously been reported during murine preadipocyte lineage differentiation but it remains unknown whether this emergence also occurs during adipogenesis in man. Our aim was to compare SSAO and monoamine oxidase (MAO) expression during in vitro differentiation of human preadipocytes and in adipose and stroma-vascular fractions of human fat depots. A human preadipocyte cell strain from a patient with Simpson-Golabi-Behmel syndrome was first used to follow amine oxidase expression during in vitro differentiation. Then, human preadipocytes isolated from subcutaneous adipose tissues were cultured under conditions promoting ex vivo adipose differentiation and tested for MAO and SSAO expression. Lastly, human adipose tissue was separated into mature adipocyte and stroma-vascular fractions for analyses of MAO and SSAO at mRNA, protein and activity levels. Both SSAO and MAO were increased from undifferentiated preadipocytes to lipid-laden cells in all the models: 3T3-F442A and 3T3-L1 murine lineages, human SGBS cell strain or human preadipocytes in primary culture. In human subcutaneous adipose tissue, the adipocyte-enriched fraction exhibited seven-fold higher amine oxidase activity and contained three- to seven-fold higher levels of mRNAs encoded by MAO-A, MAO-B, AOC3 and AOC2 genes than the stroma-vascular fraction. MAO-A and AOC3 genes accounted for the majority of their respective MAO and SSAO activities in human adipose tissue. Most of the SSAO and MAO found in adipose tissue originated from mature adipocytes. Although the mechanism and role of adipogenesis-related increase in amine oxidase expression remain to be established, the resulting elevated levels of amine oxidase activities found in human adipocytes may be of potential interest for therapeutic intervention in obesity.  相似文献   

6.
Semicarbazide sensitive amine oxidase (SSAO) metabolizes oxidative deamination of primary aromatic and aliphatic amines. It is selectively expressed in vascular cells of blood vessels, but it is also circulating in blood plasma. SSAO activity in plasma is increased in some diseases associated with vascular complications and its catalytic products may cause tissue damage. We examined the effect of the oxidation of the SSAO substrate, methylamine, on cultured smooth muscle cells. Cell incubation with methylamine plus soluble SSAO, contained in bovine serum, resulted toxic to rat aorta A7r5 and human aortic smooth muscle cells, as measured by MTT reduction. This effect was completely reverted by specific SSAO inhibitors, indicating that the toxicity was mediated by the end products generated. Moreover, SSAO-mediated deamination of methylamine induced apoptosis in A7r5 cells, detected by chromatin condensation, Caspase-3 activation, PARP cleavage and cytochrome c release to cytosol. Formaldehyde, rather than H2O2, resulted to be a strong apoptotic inducer to A7r5 cells. Taken together, the results suggest that increased plasma SSAO activity in pathological conditions, could contribute to apoptosis in smooth muscle cells, leading to vascular tissue damage.  相似文献   

7.
8.
Elevated levels of semicarbazide-sensitive amine oxidase (SSAO) activity have been observed in several human conditions such as congestive heart failure, diabetes mellitus, and inflammation. The reactive aldehydes and hydrogen peroxide produced by SSAO have been suggested to contribute to the progression of vascular complications associated with these conditions. In addition, SSAO activity has been shown to be involved in the leukocyte extravasation process at sites of inflammation. To facilitate characterization and development of specific and selective inhibitors of SSAO, we have developed a method for production of recombinant human SSAO. The extracellular region (residues 29-763) of human SSAO was expressed in HEK293 cells in fusion with a mutated Schistosoma japonicum glutathione S-transferase (GST) and secreted to the culture medium. The mutGST-SSAO fusion protein was purified in a single step by glutathione-affinity chromatography followed by site-specific cleavage using a GST-3C protease fusion protein to remove the mutGST fusion partner. A second glutathione-affinity chromatography step was then used to capture both the mutGST fusion partner and the GST-3C protease, resulting in milligram quantities of pure, enzymatically active, and soluble recombinant human SSAO.  相似文献   

9.
We report here a simple and sensitive method for the measurement of semicarbazide-sensitive amine oxidase (SSAO) activity in human plasma. Benzaldehyde, generated during a 1-h incubation of plasma with benzylamine, is derivatized with the specific aldehyde reagent dimedone after prior deproteinization. Quantitation of the derivatization product is done by automated injection onto an isocratic high-performance liquid chromatographic system with fluorimetric detection. The assay shows good linearity and reproducibility (intra-assay C.V. 7%). Detection limit is 25 mU/1 (= pmol/ml/min). In 51 healthy controls (age 49 ± 13 yr, 20 males) the measured SSAO activity was 352 ± 102 mU/1 (mean ± S.D.). A large number of samples (70–80) can easily be processed in one day by one technician.  相似文献   

10.
Semicarbazide-sensitive amine oxidase (SSAO), identical to primary amine oxidase or vascular adhesion protein-1, is a membrane enzyme that generates hydrogen peroxide. SSAO is highly expressed at the adipocyte surface, and its plasma levels increase with type 2 diabetes. Since visceral adipose tissue (AT) is more tightly associated with obesity complications than subcutaneous (SC) abdominal fat, we compared SSAO activity in plasma and 4 distinct AT locations in 48 severely obese women (body mass index (BMI), averaging 54 ± 11 kg/m2), with or without a dysmetabolic profile. Higher glucose and triacylglycerol levels vs lower high-density lipoprotein (HDL)-cholesterol characterized dysmetabolic women (DYS; n = 25) from non-dysmetabolic (NDYS; n = 23), age- and weight-matched subjects. SC, mesenteric (ME), omental (OM), and round ligament (RL) fat locations were collected during bariatric surgery. SSAO capacity to oxidize up to 1 mM benzylamine was determined in AT and plasma with radiometric and fluorimetric methods. Plasma SSAO was higher in the DYS group. SSAO activity was higher in fat than in plasma, when expressed as radiolabeled benzaldehyde per milligram of protein. In ATs from DYS women, protein content was 10 % higher, and basal hydrogen peroxide release lower than in NDYS subjects, except for RL location. The SSAO affinity towards benzylamine did not exhibit regional variation and was not altered by a dysmetabolic profile (K m averaging 184 ± 7 μM; n = 183). Although radiometric and fluorimetric methods gave different estimates of oxidase activity, both indicated that AT SSAO activity did not vary according to anatomical location and/or metabolic status in severely obese women.  相似文献   

11.
Uric acid is involved in nitrogenous waste in animals, together with ammonia and urea. Uric acid has also antioxidant properties and is a surrogate marker of metabolic syndrome. We observed that the elevated plasma uric acid of high-fat fed mice was normalized by benzylamine treatment. Indeed, benzylamine is the reference substrate of semicarbazide-sensitive amine oxidase (SSAO), an enzyme highly expressed in fat depots and vessels, which generates ammonia when catalysing oxidative deamination. Ammonia interferes with uric acid metabolism/solubility. Our aim was therefore to investigate whether the lowering action of benzylamine on uric acid was related to an improvement of diabetic complications, or was connected with SSAO-dependent ammonia production. First, we observed that benzylamine administration lowered plasma uric acid in diabetic db/db mice while it did not modify uric acid levels in normoglycemic and lean mice. In parallel, benzylamine improved the glycemic control in diabetic but not in normoglycemic mice, while plasma urea remained unaltered. Then, uric acid plasma levels were measured in mice invalidated for AOC3 gene, encoding for SSAO. These mice were unable to oxidize benzylamine but were not diabetic and exhibited unaltered plasma uric levels. Therefore, activated or abolished ammonia production by SSAO was without influence on uric acid in the context of normoglycemia. Our observations confirm that plasma uric acid increases with diabetes and can be normalized when glucose tolerance is improved. They also show that uric acid, a multifunctional metabolite at the crossroads of nitrogen waste and of antioxidant defences, can be influenced by SSAO, in a manner apparently related to changes in glucose homeostasis.  相似文献   

12.
Components of fetal calf serum (FCS) are known to contribute to growth and maintenance of cultured cells. Fetal calf serum supplementation of media also may contribute to the cytotoxicity of other substances to cells grown in vitro. Semicarbazide-sensitive amine oxidase (SSAO) enzyme, present in FCS, metabolizes primary amines and contributes to amine cytotoxicity in vascular smooth muscle cells (VSMC). In cell culture experiments, the media used may greatly affect enzymic activities such as SSAO. In these studies, the SSAO activity in FCS, cultured rat aortic VSMC, and rat plasma was determined in the presence and absence of various culture media. Semicarbazide-sensitive amine oxidase activity in FCS (5-20 microl) was significantly enhanced (approximately 1.5- to 2-fold) in the presence of various culture media, with Dulbecco modified Eagle medium (DMEM), causing the greatest enhancement. Dulbecco modified Eagle medium enhanced the SSAO activity of cultured VSMC in two of the four passages but reduced activity in two passages. Activity in rat plasma was reduced by approximately 25% in the presence of DMEM. The concentrations of various media components, such as glucose, sodium pyruvate, pyridoxine.HCl, and L-glutamine, were not correlated with enhancement. This study identifies an important enhancement effect of culture media on the FCS enzyme, SSAO, although the media components responsible for the enhancement are yet to be identified.  相似文献   

13.
In the last few decades, medicinal chemists have carried out extensive research on synthetic polyamines for use as anticancer drugs and multitarget-directed ligands in neurodegenerative diseases. The aim of this study was to evaluate the effect of some synthetic polyamines as inhibitors of two new potential targets, human semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1) and monoamine oxidases B (MAO B), enzymes involved in various multi-factorial diseases such as Alzheimer's disease. N,N'-Dibenzyl-dodecane-1,12-diamine (Bis-Bza-Diado), a newly synthesised compound, and ELP 12, a muscarinic cholinergic M(2) receptor antagonist, were found to behave as reversible and mixed non-competitive inhibitors of both amine oxidases (dissociation constants of about 100 μM). ELP 12 was found to be more selective for SSAO/VAP-1. Combining kinetic and structural approaches, the binding mode of ELP 12 to SSAO/VAP-1 was investigated. ELP 12 may bind at the entrance of the active site channel by ionic interactions with ASP446 and/or ASP180; one end of the polyamine may be accommodated inside the channel, reaching the TPQ cofactor area. The binding of ELP 12 induces rearrangement of the secondary structure of the enzyme and impedes substrate entry and/or product release and catalysis. These structural data reveal that the entrance and the first part of the SSAO/VAP-1 channel may be considered as a new target area, or a "secondary binding site", for modulators of human SSAO/VAP-1 activity. These results indicate ELP 12 and Bis-Bza-Diado as new "skeletons" for the development of novel SSAO/VAP-1 and MAO B inhibitors.  相似文献   

14.
Patients with diabetes mellitus and with vascular complications in particular, exhibit higher plasma activities of semicarbazide-sensitive amine oxidase (SSAO) compared to control subjects. It has been speculated that production of cytotoxic products of SSAO may cause endothelial damage and thus contribute to the development of diabetic vascular complications such as retino-, nephro-, and neuropathies as a result of SSAO activity.In order to explore the possibility that high SSAO activity contributes to the development of vascular complications in diabetes, we have performed two studies in patients with Type-2 diabetes quantifying plasma SSAO activity, HbA(1c), and urinary levels of the SSAO substrate, methylamine. We also examined the prevalence of retinopathy in these patients. Additionally, we have studied a model of transgenic mice expressing human SSAO in smooth muscle cells. The transgenic mice have an increased SSAO activity as well as mRNA expression. Histological studies revealed a specific aorta phenotype with a condensed and rigid vessel wall in some of the transgenic mice. No wild-type animals displayed this phenotype.In conclusion, we suggest that this transgenic mouse model may be of great value for increasing the knowledge about to what extent human SSAO contributes to vascular complications in diabetes, and also to which extent inhibition of SSAO can prevent the development of such complications.  相似文献   

15.
1. After allyl formate (AF) was administered to the rats, the existence of semicarbazide-sensitive amine oxidase (SSAO) in rat identified. 2. When the heart homogenate and plasma of AF-administered rat were pretreated with 10(-3) M clorgyline and deprenyl, the Km value for benzylamine of rat heart was same as the value of plasma. 3. The existence of SSAO in plasma of AF-administered rats were identified by IEF-gel electrophoresis. The pI values of SSAO in heart and plasma were a single peak of 5.0. 4. SSAO released from the rat heart in response to AF, although the other origins of this enzyme are unknown.  相似文献   

16.
Lysophosphatidylcholine (LPC) is the major bioactive lipid component of oxidized LDL, thought to be responsible for many of the inflammatory effects of oxidized LDL described in both inflammatory and endothelial cells. Inflammation-induced transformation of vascular smooth muscle cells from a contractile phenotype to a proliferative/secretory phenotype is a hallmark of the vascular remodeling that is characteristic of atherogenesis; however, the role of LPC in this process has not been fully described. The present study tested the hypothesis that LPC is an inflammatory stimulus in coronary artery smooth muscle cells (CASMCs). In cultured human CASMCs, LPC stimulated time- and concentration-dependent release of arachidonic acid that was sensitive to phospholipase A2 and C inhibition. LPC stimulated the release of arachidonic acid metabolites leukotriene-B4 and 6-keto-prostaglandin F, within the same time course. LPC was also found to stimulate basic fibroblast growth factor release as well as stimulating the release of the cytokines GM-CSF, IL-6, and IL-8. Optimal stimulation of these signals was obtained via palmitic acid-substituted LPC species. Stimulation of arachidonic acid, inflammatory cytokines and growth factor release, implies that LPC might play a multifactorial role in the progression of atherosclerosis, by affecting inflammatory processes.  相似文献   

17.
Electrophoretic analysis of plasminogen activators from pig heart, human uterus, human plasma and human melanoma cells was performed in SDS-polyacrylamide gradient slab gels containing plasminogen and casein. Direct visualization of activator activity bands in polyacrylamide gels was achieved after removal of SDS, incubation in buffer, and staining with Coomassie brilliant blue. Tissue activator extracted from pig hearts displayed a molecular weight of 72000 and migrated similarly to activator secreted by human melanoma cells and to one activator component present in extracts of human uterus. Immunoadsorption experiments with melanoma cell activator antiserum indicated that these 72-kDa activators are all related immunologically. Human uterus also contained a second activator component with a molecular weight 55000, which migrated similarly to a higher molecular weight component of urokinase and cross-reacted with urokinase antiserum. We conclude that the 72-kDa uterine activator component represents a tissue activator and the 55-kDa component represents a urokinase-like activator. A euglobulin solution from venous occlusion plasma displayed multiple bands of plasmin activity in the Mr range 85000-96000. Two activator components were also present, one of Mr 72000 and another of Mr 62000. The 72-kDa euglobulin activator was adsorbed by MCA antiserum, and we conclude that this component represents vascular activator. The 62000 activator also had weak plasminogen-independent caseinolytic activity and was not affected by either melanoma cell activator or urokinase antisera. Conclusions concerning its identity cannot be made at this time.  相似文献   

18.
Obata T 《Life sciences》2006,79(5):417-422
The enzyme of semicarbazide-sensitive amine oxidase (SSAO) activity has been reported to be elevated in blood from diabetic patients. SSAO are widely distributed in plasma membranes of various tissues and blood plasma. SSAO-mediated production of toxic aldehydes has been proposed to be related to pathophysiological conditions. Cytotoxic metabolites by SSAO may cause endothelial injury and subsequently induce atherosclerosis. The precise physiological functions of SSAO could play an important role in the control of energy balance in adipose tissue. It is possible that the increased SSAO activity in diabetes may be a result of up-regulation due to increase of SSAO substrates, such as methylamine or aminoacetone. SSAO could play an important role in the regulation of adipocyte homeostasis. Inhibition of SSAO could be of therapeutic value for treatment of diabetic patient.  相似文献   

19.
Adipocytes express two types of amine oxidases: the cell surface semicarbazide-sensitive amine oxidase (SSAO) and the mitochondrial monoamine oxidase (MAO). In human abdominal subcutaneous adipose tissue, it has been reported that SSAO substrates stimulate glucose transport and inhibit lipolysis while MAO activity is decreased in obese patients when compared to age-matched controls. However, no information has been reported on visceral WAT. To further investigate the obesity-induced regulations of MAO and SSAO in white adipose tissue (WAT) from different anatomical locations, enzyme activities and mRNA abundance have been determined on tissue biopsies from control and high-fat fed dogs, an obesity model already described to be associated with arterial hypertension and hyperinsulinemia. MAO activity was increased in the enlarged omental WAT of diet-induced obese dogs, but not in their mesenteric WAT, another intra-abdominal fat depot. Subcutaneous WAT did not exhibit any change in MAO activity, as did the richest MAO-containing tissue: liver. Similarly, SSAO was increased in omental WAT of diet-induced obese dogs, but was not modified in other WAT and in aorta. The increase in SSAO activity observed in omental WAT likely results from an increased expression of the AOC3 gene since mRNA abundance and maximal benzylamine oxidation velocity were increased. Finally, plasma SSAO was decreased in obese dogs. Although the observed regulations differ from those found in subcutaneous WAT of obese patients, this canine model shows a tissue- and site-specific regulation of peripheral MAO and SSAO in obesity.  相似文献   

20.
Semicarbazide-sensitive amine oxidase (SSAO), widely distributed in highly vascularized mammalian tissues, metabolizes endogenous and xenobiotic aromatic and aliphatic monoamines. To assess whether its physiological role in humans is restricted to oxidation, we used an immunohistochemical approach to examine the cellular localization of SSAO in human peripheral tissues (adrenal gland, duodenum, heart, kidney, lung, liver, pancreas, spleen, thyroid gland, and blood vessels) and also analyzed its subcellular localization. The results are in agreement with the specific activities also determined in the same samples and are discussed with reference to the tissue distribution of monoamine oxidase A and B. Together with the oxidative deamination of monoamines, SSAO cellular localization indicates that, in most human peripheral tissues, it might participate in the regulation of physiological processes via H(2)O(2) generation. (J Histochem Cytochem 49:209-217, 2001)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号