首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V. G. Ladygin 《Biophysics》2006,51(4):635-644
A xantha mutant of cotton (Gossypium hirsutum L.) with blocked synthesis of 5-aminolevulinic acid in light accumulates 30 times less chlorophyll than the parental strain. Formation of the chloroplast membrane system in the mutant stops at very early stages, mostly vesicles and single short thylakoids. The mutant plastid membranes contain only light-harvesting chlorophyll-a/b-protein complexes I and II with fluorescence maxima at 728 and 681 nm, respectively. Thus, an early block of chlorophyll synthesis impairs the formation and function of photosystem reaction centers and retards the development of the chloroplast membrane system at the stage of proplastids.  相似文献   

2.
Xantha-702 mutant of cotton (Gossypium hirsutum L.) proved to have blocked synthesis of 5-aminolevulinic acid in the light. Accordingly, mutant leaves accumulated 2–5% chlorophyll of baseline. Mutant plants demonstrated disturbed production of pigment-protein complexes of photosystems I (PSI) and II (PSII) and generation of the chloroplast membrane system blocked at the early stages, largely, at the stages of vesicles and single short thylakoid. The functional activity of the PSI and PSII reaction centers was close to zero. Only the chlorophyll a/b light-harvesting complexes of PSI and PSII with the chlorophyll fluorescence peaks at 728 and 681 nm, respectively, were produced in the xantha-702 mutant. We propose that the genetic block of 5-aminolevunilic acid biosynthesis in the light in the xantha-702 mutant disturbs the formation and activity of the complexes of the reaction centers of PS-I and PS-II and inhibits the development of the whole membrane system of chloroplasts.  相似文献   

3.
To compare chloroplast development in a normally grown plant with etiochloroplast development, green maize plants (Zea mays), grown under a diurnal light regime (16-hour day) were harvested 7 days after sowing and chloroplast biogenesis within the leaf tissue was examined. Determination of total chlorophyll content, ratio of chlorophyll a to chlorophyll b, and O2-evolving capacity were made for intact leaf tissue. Plastids at different stages of development were isolated and the electron-transporting capacities of photosystem I and photosystem II measured. Light saturation curves were produced for O2-evolving capacity of intact leaf tissue and for photosystem I and photosystem II activities of isolated plastids. Structural studies were also made on the developing plastids. The results indicate that the light-harvesting apparatus becomes increasingly efficient during plastid development due to an increase in the photosynthetic unit size. Photosystem I development is completed before that of photosystem II. Increases in O2-evolving capacity during plastid development can be correlated with increased thylakoid fusion. The pattern of photosynthetic membrane development in the light-grown maize plastids is similar to that found in greening etiochloroplasts.  相似文献   

4.
The time course for the observation of intact chlorophyll-protein (CP) complexes during barley chloroplast development was measured by mild sodium dodecyl sulfate polyacrylamide gel electrophoresis. The procedure required extraction of thylakoid membranes with sodium bromide to remove extrinsic proteins. During the early stages of greening, the proteins extracted with sodium bromide included polypeptides from the cell nucleus that associate with developing thylakoid membranes during isolation and interfere with the separation of CP complexes by electrophoresis. Photosystem I CP complexes were observed before the photosystem II and light-harvesting CP complexes during the initial stages of barley chloroplast development. Photosystem I activity was observed before the photosystem I CP complex was detected whereas photosystem II activity coincided with the appearance of the CP complex associated with photosystem II. Throughout chloroplast development, the percentage of the total chlorophyll associated with photosystem I remained constant whereas the amount of chlorophyll associated with photosystem II and the light-harvesting complex increased. The CP composition of thylakoid membranes from the early stages of greening was difficult to quantitate because a large amount of chlorophyll was released from the CP complexes during detergent extraction. As chloroplast development proceeded, a decrease was observed in the amount of chlorophyll released from the CP complexes by detergent action. The decrease suggested that the CP complexes were stabilized during the later stages of development.Abbreviations Chl chlorophyll - CP chlorophyll-protein - CPI P700 chlorophyll-a protein complex of photosystem I - CPa electrophoretic band that contains the photosystem II reaction center complexes and a variable amount of the photosystem I light-harvesting complex - CP A/B the major light-harvesting complex associated with photosystem II - DCIP 2,6-dichlorophenolindophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DPC diphenyl carbazide - MV methyl viologen - PAR photosynthetically active radiation - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TEMED N,N,N,N-tetramethylethylenediamine - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601. Paper No. 9949 of the Journal Series of the North Carolina Agricultural Research Service, Raleight, NC 27695-7601.  相似文献   

5.
Barley, maize, pea, soybean, and wheat exhibited differences in chlorophyll a/b ratio and chlorophyll-protein (CP) complex composition during the initial stages of chloroplast development. During the first hours of greening, the chlorophyll a/b ratios of barley, pea, and wheat were high (a/b8) and these species contained only the CP complex of photosystem I as measured by mild sodium dodecyl sulfate polyacrylamide gel electrophoresis. A decrease in chlorophyll a/b ratio and the observation of the CP complexes associated with photosystem II and the light-harvesting apparatus occurred at later times in barley, pea, and wheat. In contrast, maize and soybean exhibited low chlorophyll a/b ratios (a/b<8) and contained the CP complexes of both photosytem I and the light-harvesting apparatus at early times during chloroplast development. The species differences were not apparent after 8 h of greening. In all species, the CP complexes were stabilized during the later stages of chloroplast development as indicated by a decrease in the percentage of chlorophyll released from the CP complexes during detergent extraction. The results demonstrate that CP complex synthesis and accumulation during chloroplast development may not be regulated in the same way in all higher plant species.Abbreviations Chl chlorophyll - CP chlorophyll-protein - CPI P700 chlorophyll-a protein complex of photosystem I - CPa electrophoretic band that contains the photosystem II reaction center complexes and a variable amount of the photosystem I light-harvesting complex - LHC the major light-harvesting complex associated with photosystem II - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601. Paper No. 10335 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601.  相似文献   

6.
It was demonstrated that, in the phenotypically colorless leaves of a sunflower (Helianthus annuusL.) plastome mutant with a heavily reduced level of chlorophyll, all pigment–protein complexes of the photosynthetic apparatus typical for the wild type were present. However, the ratio between them was changed. During aging of the mutant leaves, pigment–protein complexes of photosystem I were destroyed first followed by those of photosystem II. Chlorophyll a/b-containing light-harvesting complex II turned out to be the most stable. This conforms to an increased content of lutein and violaxanthin in mutant leaves. A synchrony of the decreases in the chlorophyll and 5-aminolevulinic acid (ALA) contents throughout all ontogenetic stages of the colorless mutant leaves made it possible to suggest that a decrease in the synthesis and resynthesis of chlorophyll during the formation and development of such leaves is caused by the inhibition of an initial stage of this process, namely, the biosynthesis of ALA molecules. The activity of the enzymes converting ALA into protochlorophyllide did not limit chlorophyll biosynthesis. Possible mechanisms controlling the synthesis of ALA destined for chlorophyll formation are discussed.  相似文献   

7.
Ladygin VG 《Biofizika》2006,51(4):710-723
The cotton mutant xantha (Gossypium hirsutum L.) with the blocked synthesis of 5-aminolevulinic acid in the light has been shown to accumulate chlorophyll 30 times less than the parent type. In chloroplasts of the mutant xantha, the formation of the membrane system is blocked at the earliest stages, mainly at the stage of bubbles and single short thylakoids. Only light-harvesting chlorophyll-a/b-protein complexes I and II with chlorophyll fluorescence maxima at 728 and 681 nm, respectively, are formed in plastid membranes of the mutant. It has been concluded that the genetic block of chlorophyll biosynthesis in the mutant xantha disturbs the formation and functioning of the complexes in reaction centers of PS-I and PS-II, inhibiting the development of the whole membrane system of chloroplasts at the stage of bubbles and single thylakoids.  相似文献   

8.
The stepwise synthesis and assembly of photosynthetic membrane components in the y-1 mutant of Chlamydomonas reinhardi have been previously demonstrated (Ohad 1975 In Membrane Biogenesis, Mitochondria, Chloroplasts and Bacteria, Plenum, pp 279-350). This experimental system was used here in order to investigate the process of formation and interconnection of the energy collecting chlorophylls with the reaction centers of both photosystems I and II. The following measurements were carried out: photosynthetic electron flow at various light intensities, including parts or the entire electron transfer chain; analysis of the kinetics of fluorescence emission at room temperature and fluorescence emission spectra at 77 K, and electrophoretic separation of membrane polypeptides and chlorophyll protein complexes. Based on the data obtained it is concluded that: (a) each photosystem (PSI and PSII) contains, in addition to the reaction center, an interconnecting antenna and a main or light harvesting antenna complex; (b) the formation of the light harvesting complex, interconnecting antenna, and reaction centers for each photosystem can occur independently. (c) the interconnecting antennae link the light harvesting complexes with the respective reaction centers. In their absence, energy transfer between the light harvesting chlorophylls and the reaction centers is inefficient. The formation of the interconnecting antennae and efficient assembly of photosystem components occur simultaneously with the de novo synthesis of chlorophyll and at least three polypeptides, one translated in the cytoplasm and two translated in the chloroplast. The synthesis of these polypeptides was found to be light dependent.  相似文献   

9.
Proplastids and etioplasts are common starting points for monitoring chloroplast development in higher plants. Although proplastids are the primary precursor of chloroplasts, most proplastid to chloroplast systems are cumbersome to study temporally. Conversely, the etioplast to chloroplast transition is initiated by light and is readily examined as a function of time. Etioplasts, however, are found mostly in plants germinated in the dark and are not an obligatory step in chloroplast development. We have chosen to study chloroplast ontogeny in Spirodela oligorrhiza (Kurtz) Hegelm (a C3-monocot) because of its unique ability to grow indefinitely in the dark. Ultrastructural, physiological, and molecular evidence is presented in support of a temporal, light-triggered proplastid to chloroplast transition in Spirodela. The dark-grown plants are devoid of chlorophyll, and upon illumination synchronously green over a 3- to 5-day period. Synthesis of chloroplast proteins involved in photosynthesis is coincident with thylakoid assembly, chlorophyll accumulation, and appearance of CO2 fixation activity. Interestingly, the developmental sequence in Spirodela was slow enough to reveal that biosynthesis of the D1 photosystem II reaction center protein precedes biosynthesis of the major light-harvesting antenna proteins. This, coupled with the high chlorophyll a/b ratio observed early in development, indicated that reaction center assembly occurred prior to accumulation of the light-harvesting complexes. Thus, with Spirodela one can study proplastid to chloroplast conversions temporally in higher plants and follow the process on a time scale that enables a detailed dissection of plastid maturation processes.  相似文献   

10.
11.
The effect of chlorophyll–protein complexes on the ultrastructure of chloroplasts was studied in the leaves of pea, the parent cultivar Torsdag and mutants chlorotica 2004 and 2014. The mutants were shown to accumulate 80 and 55% of chlorophyll, relative to the control, while the composition of the synthesized photosystem complexes was the same as in the parent cultivar Torsdag. The size of the light-harvesting antenna was similar to the control in the 2014 mutant but considerably increased (by 30%) in the 2004 mutant. These changes were due to a proportional decrease in the number of all complexes (by 40–45%) in the 2014 mutant. At the same time, the number of reaction center complexes of photosystem I (PS I) decreased by 50% while that of photosystem II (PS II) remained virtually constant in the 2004 mutant. A proportional decrease in the number of the PS I and PS II complexes in the chlorotica 2014 mutant was accompanied by a partial reduction of the entire chloroplast membrane system against the background of normal development of both granal and intergranal sites of thylakoids. Conversely, the loss of PS I reaction centers led mainly to the reduction of the intergranal sites of thylakoids in chloroplasts. This effect is attributed to the prevalence of PS I complexes in the intergranal thylakoids.  相似文献   

12.
Summary A group of chlorophyll deficient mutants (br s mutants) of Chlamydomonas accumulates protoporphyrin and has poorly developed chloroplast membrane systems (Wang et al. 1974). In order to determine whether a poorly developed chloroplast membrane system is the reason for, or the result of, the inability of the br s mutants to metabolize protoporphyrin to chlorophyll, a second mutation was selected which restored chlorophyll synthesis in br s mutants. One such double mutant (br s-2 g-4) was analyzed. The double mutant br s-2 g-4 has partially restored chlorophyll synthesis, but has defective photosystem II and photosystem I electron transport as well as abnormal chloroplast ultrastructure. Since these defects are not present in cells carrying only the g-4 mutation, they are presumed to be caused by the br s-2 mutation. It is concluded that a defect in chloroplast membrane development resulting from the br s-2 mutation causes an apparent defect in magnesium chelation by protoprophyrin. This is consistant with evidence that chlorophyll biosynthesis from magnesium protoporphyrin to chlorophyll takes place on the chloroplast membranes.  相似文献   

13.
Chlorophyll (Chl) deficiency in leaves of a plastome sunflower (Helianthus annuus L.) en:chlorina-5 mutant is due to the formation of smaller chloroplasts with a markedly reduced membrane system, as compared to the parent 3629 line. Abnormalities in the structure of the photosynthetic apparatus in the mutant can be mainly attributed to changes in the formation of photosystem I and its light-harvesting complexes. Chl deficiency in en:chlorina-5 correlated with its lower capability of synthesizing the first specific Chl precursor, 5-aminolevulinic acid (ALA) in the light. Light-independent stages of Chl biosynthesis in the mutant had the same efficiency as in leaves of the parent line. ALA formation in darkness and its conversion into protochlorophyllide did not depend on the extent of photosynthetic membrane development and photosynthetic activity.  相似文献   

14.
Treatment of chloroplast membranes of Chlamydomonas reinhardi with Triton-× 100 yielded membrane particles which were resolved into three bands on discontinuous sucrose gradients. One of these was enriched in the chlorophyll absorption and fluorescence properties and photosynthetic activities consistent with photosystem I enrichment, while another had the chlorophyll absorption and fluorescence properties expected to photosystem II enriched particles. The third type of particle was enriched in chlorophyll species which are probably the bulk chlorophylls of photosystem I. Analysis of the proteins of these fractions by polyacrylamide electrophoresis indicated substantial differences, the most striking being that the photosystem II particle type was greatly enriched in the major species of chloroplast membrane protein. Previous work has shown this to be an important protein controlling membrane assembly. This protein was depleted in the photosystem I particle type. We interpret this data to indicate a lack of homogeneity in the distribution of membrane proteins in the chloroplast membranes of Chlamydomonas, at the level of the two photosystems.  相似文献   

15.
16.
We have monitored the accumulation of photosynthetic proteins in developing pigment-deficient mutants of Zea mays. The proteins examined are the CO2-fixing enzymes, phoshoenolpyruvate carboxylase (E.C. 4.1.1.31) and ribulose-1,5-bisphosphate carboxylase (E.C.4.1.1.39), and three thylakoid membrane proteins, the light-harvesting chlorophyll a/b binding protein (LHCP) of photosystem II, the 65 kilodalton chlorophyll a binding protein of photosystem I and the alpha subunit polypeptide of coupling factor I. Using a sensitive protein-blot technique, we have compared the relative quantities of each protein in mutants and their normal siblings. Carboxylase accumulation was found to be independent of chlorophyll content, while the amounts of the thylakoid proteins increase at about the same time as chlorophyll in delayed-greening mutants. The relative quantity of LHCP is closely correlated with the relative quantity of chlorophyll at all stages of development in all mutants. Because pigment-deficient mutants are arrested at early stages in chloroplast development, these findings suggest that the processes of chloroplast development, chlorophyll synthesis and thylakoid protein accumulation are coordinated during leaf development but that carboxylase accumulation is controlled by different regulatory mechanisms. A white leaf mutant was found to contain low levels of LHCP mRNA, demonstrating that the accumulation of LHCP mRNA is not controlled exclusively by phytochrome.  相似文献   

17.
18.
Maize seedlings, treated with the herbicide norflurazon to produce a deficiency in carotenoid pigments, were grown in low-fluence-rate light. Under these conditions, which induced chlorophyll biosynthesis while minimizing photooxidation, carotenoid-deficient seedlings showed identical patterns of chloroplast protein accumulation compared with normal seedlings. Carotenoid pigments thus play no direct role in regulating the accumulation of chloroplast proteins. When shifted to high-fluence-rate light, chlorophyll was rapidly photooxidized in carotenoid-deficient seedlings. Chloroplast proteins showed varying degrees of sensitivity to photooxidation. The P-700 apoprotein of photosystem I was rapidly degraded. Most stromal and thylakoid proteins either decreased progressively in photooxidative conditions or appeared to be unaffected. The relative quantity of the light-harvesting chlorophyll a/b-binding protein of photosystem II increased significantly in the first few hours of high-fluence-rate light. It then appeared to be only minimally affected 18 hours after complete photooxidation of chlorophyll.  相似文献   

19.
Gun4 is a porphyrin-binding protein that activates magnesium chelatase, a multimeric enzyme catalyzing the first committed step in chlorophyll biosynthesis. In plants, GUN4 has been implicated in plastid-to-nucleus retrograde signaling processes that coordinate both photosystem II and photosystem I nuclear gene expression with chloroplast function. In this work we present the functional analysis of Gun4 from the cyanobacterium Synechocystis sp. PCC 6803. Affinity co-purification of the FLAG-tagged Gun4 with the ChlH subunit of the magnesium chelatase confirmed the association of Gun4 with the enzyme in cyanobacteria. Inactivation of the gun4 gene abolished photoautotrophic growth of the resulting gun4 mutant strain that exhibited a decreased activity of magnesium chelatase. Consequently, the cellular content of chlorophyll-binding proteins was highly inadequate, especially that of proteins of photosystem II. Immunoblot analyses, blue native polyacrylamide gel electrophoresis, and radiolabeling of the membrane protein complexes suggested that the availability of the photosystem II antenna protein CP47 is a limiting factor for the photosystem II assembly in the gun4 mutant.  相似文献   

20.
The effects of protein phosphorylation and cation depletion on the electron transport rate and fluorescence emission characteristics of photosystem I at two stages of chloroplast development in light-grown wheat leaves are examined. The light-harvesting chlorophyll a/b protein complex associated with photosystem I (LHC I) was absent from the thylakoids at the early stage of development, but that associated with photosystem II (LHC II) was present. Protein phosphorylation produced an increase in the light-limited rate of photosystem I electron transport at the early stage of development when chlorophyll b was preferentially excited, indicating that LHC I is not required for transfer of excitation energy from phosphorylated LHC II to the core complex of photosystem I. However, no enhancement of photosystem I fluorescence at 77 K was observed at this stage of development, demonstrating that a strict relationship between excitation energy density in photosystem I pigment matrices and the long-wavelength fluorescence emission from photosystem I at 77 K does not exist. Depletion of Mg2+ from the thylakoids produced a stimulation of photosystem I electron transport at both stages of development, but a large enhancement of the photosystem I fluorescence emission was observed only in the thylakoids containing LHC I. It is suggested that the enhancement of PS I electron transport by Mg2+-depletion and phosphorylation of LHC II is associated with an enhancement of fluorescence at 77 K from LHC I and not from the core complex of PS I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号