首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The amino acid sequence of the flavoprotein subunit of Chromatium vinosum flavocytochrome c-sulfide dehydrogenase (FCSD) was determined by automated Edman degradation and mass spectrometry in conjunction with the three-dimensional structure determination (Chen Z et al., 1994, Science 266:430-432). The sequence of the diheme cytochrome c subunit was determined previously. The flavoprotein contains 401 residues and has a calculated protein mass, including FAD, of 43,568 Da, compared with a mass of 43,652 +/- 44 Da measured by LDMS. There are six cysteine residues, among which Cys 42 provides the site of covalent attachment of the FAD. Cys 161 and Cys 337 form a disulfide bond adjacent to the FAD. The flavoprotein subunit of FCSD is most closely related to glutathione reductase (GR) in three-dimensional structure and, like that protein, contains three domains. However, approximately 20 insertions and deletions are necessary for alignment and the overall identity in sequence is not significantly greater than for random comparisons. The first domain binds FAD in both proteins. Domain 2 of GR is the site of NADP binding, but has an unknown role in FCSD. We postulate that it is the binding site for a cofactor involved in oxidation of reduced sulfur compounds. Domains 1 and 2 of FCSD, as of GR, are homologous to one another and represent an ancient gene doubling. The third domain provides the dimerization interface for GR, but is the site of binding of the cytochrome subunit in FCSD. The four functional entities, predicted to be near the FAD from earlier studies of the kinetics of sulfite adduct formation and decay, have now been identified from the three-dimensional structure and the sequence as Cys 161/Cys 337 disulfide, Trp 391, Glu 167, and the positive end of a helix dipole.  相似文献   

2.
Flavocytochrome c-sulfide dehydrogenase (FCSD), an enzyme that catalyzes the reversible conversion of sulfide to elemental sulfur in vitro, is common to bacteria that utilize reduced sulfur compounds as electron donors in the process of carbon dioxide fixation. FCSD is a heterodimer containing two different cofactors, a flavin (FAD) and one or two heme c groups, located on the separate protein subunits. Efforts to produce the holoproteins of the soluble Allochromatium vinosum FCSD and the membrane-bound Ectothiorhodospira vacuolata protein in Escherichia coli using several expression systems were unsuccessful. Although all systems used were able to export the recombinant FCSDs to the periplasm, the proteins did not incorporate heme. In order to develop a new expression system involving photosynthetic hosts (Rhodobacter capsulatus, Rhodobacter sphaeroides and Ect. vacuolata), plasmid mobilisation from E. coli donors was studied. In the search for efficient promoters for such hosts, a system was developed combining the broad-host-range plasmid pGV910 and the promoter of the A. vinosum RuBisCo gene, rbcA. Conjugation was used to enable transfer from the expression plasmid of E. coli into Rba. capsulatus, Rba. sphaeroides strains and into Ect. vacuolata. Both Rhodobacter hosts were able to transcribe the genes coding for FCSD from the rbcA promoter and to produce detectable amounts of recombinant FCSD holoprotein. Western blots showed that the best production was obtained from cells grown photosynthetically on malate or acetate with sulfide. This system may prove to be of general use for the production of recombinant c-type cytochromes in homologous or related host systems.  相似文献   

3.
The complete sequence of the 21-kDa cytochrome subunit of the flavocytochrome c (FC) from the purple phototrophic bacterium Chromatium vinosum has been determined to be as follows: EPTAEMLTNNCAGCHG THGNSVGPASPSIAQMDPMVFVEVMEGFKSGEIAS TIMGRIAKGYSTADFEKMAGYFKQQTYQPAKQSF DTALADTGAKLHDKYCEKCHVEGGKPLADEEDY HILAGQWTPYLQYAMSDFREERRPMEKKMASKL RELLKAEGDAGLDALFAFYASQQ. The sequence is the first example of a diheme cytochrome in a flavocytochrome complex. Although the locations of the heme binding sites and the heme ligands suggest that the cytochrome subunit is the result of gene doubling of a type I cytochrome c, as found with Azotobacter cytochrome c4, the extremely low similarity of only 7% between the two halves of the Chromatium FC heme subunit rather suggests that gene fusion is at the evolutionary origin of this cytochrome. The two halves also require a single residue internal deletion for alignment. The first half of the Chromatium FC heme subunit is 39% similar to the monoheme subunit of the FC from the green phototrophic bacterium Chlorobium thiosulfatophilum, but the second half is only 9% similar to the Chlorobium subunit. The N-terminal sequence of the Chromatium FC flavin subunit was determined up to residue 41 as AGRKVVVVGGGTGGATAAKYIKLADPSIEVTLIEP NTKYYT. It shows more similarity to the Chlorobium FC flavin subunit (60%) than do the two heme subunits. The N terminus of the flavin subunit is homologous to a number of flavoproteins, including succinate dehydrogenase, glutathione reductase, and monamine oxidase. There is no obvious homology to the Pseudomonas putida FC flavin subunit, which suggests that the two types of flavocytochrome c arose by convergent evolution. This is consistent with the dissimilar enzyme activities of FC as sulfide dehydrogenase in the phototrophic bacteria and as p-cresol methylhydroxylase in Pseudomonas. We also present a sequence "fingerprint" pattern for the recognition of FAD-binding proteins which is an extended version of the consensus sequence previously presented (Wierenga, R. K., Terpstra, P., and Hol, W. G. J. (1986) J. Mol. Biol. 187, 101-107) for nucleotide binding sites.  相似文献   

4.
The function and the structural features of Chromatium vinosum cytochrome c-552 have been investigated. Cytochrome c-552 has a sulfide-cytochrome c reductase activity and also catalyzes the reduction of elementary sulfur to sulfide with reduced benzylviologen as the electron donor. In the sulfide-cytochrome reduction, horse and yeast cytochromes c act as good electron acceptors, but cytochrome c' or cytochrome c-553(550) purified from the organism does not. The subunit structure of cytochrome c-552 has been studied. The cytochrome is split by 6 M urea into cytochrome and flavoprotein moieties with molecular weights of 21,000 and 46,000, respectively. The flavoprotein moiety is obtained by isoelectric focusing in the presence of 6 M urea and 0.1% beta-mercaptoethanol, while the hemoprotein moiety is obtained by gel filtration with Sephacryl S-200 in the presence of 6 M urea and 0.1 M KCl. Neither subunit has sulfide-cytochrome c reductase activity. Attempts to reconstitute the original flavocytochrome c from the subunits have been unsuccessful.  相似文献   

5.
The complete amino acid sequence of the 86-residue heme subunit of flavocytochrome c (sulfide dehydrogenase) from the green phototrophic bacterium Chlorobium thiosulfatophilum strain Tassajara has been determined as follows: APEQSKSIPRGEILSLSCAGCHGTDGKSESIIPTIYGRSAEYIESALLDFKSGA- RPSTVMGRHAKGYSDEEIHQIAEYFGSLSTMNN. The subunit has a single heme-binding site near the N terminus, consisting of a pair of cysteine residues at positions 18 and 21. The out-of-plane ligands are apparently contributed by histidine 22 and methionine 60. The molecular weight including heme is 10,014. The heme subunit is apparently homologous to small cytochromes c by virtue of the location of the heme-binding site and its extraplanar ligands. However, the amino acid sequence is closer to Paracoccus sp. cytochrome c554(548) (37%) than it is to the heme subunit from Pseudomonas putida p-cresol methylhydroxylase flavocytochrome c (20%). The flavocytochrome c heme subunit is only 14% similar to the small cytochrome c555 also found in Chlorobium. Secondary structure predictions suggest N- and C-terminal helices as expected, but the midsection of the protein probably folds somewhat differently from the small cytochromes of known three-dimensional structure such as Pseudomonas cytochrome c551. Analyses of the residues near the exposed heme edges of the cytochrome subunits of P. putida and C. thiosulfatophilum flavocytochromes c (assuming homology to proteins of known structure) indicate that charged residues are not conserved, suggesting that electrostatic interactions are not involved in the association of the heme and flavin subunits. The N-terminal sequence of the flavoprotein subunit of flavocytochrome has also been determined. It shows no similarity to the comparable region of the p-cresol methylhydroxylase flavoprotein subunit from P. putida. The flavin-binding hexapeptide, isolated and sequenced earlier (Kenney, W. C., McIntire, W., and Yamanaka, T. (1977) Biochim. Biophys. Acta 483, 467-474), is situated at positions 40-46.  相似文献   

6.
The cytochromes c' bind CO, alkylisocyanides and CN- with rate and equilibrium constants which are 10(2)- to 10(6)-fold smaller than other high-spin hemoproteins. The decreased affinity for exogenous ligands is largely associated with steric interactions at the heme coordination site. While CO and alkylisocyanides bind noncooperatively to the dimeric Rhodospirillum molischianum cytochrome c', CO, alkylisocyanides and CN- appear to bind cooperatively to the dimeric Chromatium vinosum cytochrome c' due to a ligand-linked dimer-monomer dissociation equilibrium. The differences between the cytochromes c' are thought to be due to differences in amino acid residues near the heme coordination site and subunit interface.  相似文献   

7.
The kinetics of reduction of Chromatium vinosum flavocytochrome c heme subunit by exogenous flavin neutral semiquinones generated by laser flash photolysis have been investigated. Unlike the holoprotein, the isolated heme subunit was appreciably reactive with lumiflavin neutral semiquinone. The measured rate constant for the reaction (2.7 X 10(7) M-1 S-1) was comparable to those of c-type cytochromes having similar redox potentials. The ionic strength dependence of the reaction with FMN neutral radical indicated that the heme subunit had a small negative charge at the site of reduction. Taken together, these results suggest that the active site of the heme subunit is buried on complexation with the flavin subunit in the holoprotein. Horse cytochrome c formed a strong complex with Chromatium, but not Chlorobium, flavocytochrome c. Possible physiological electron acceptors such as HiPIP, cytochrome c', and cytochrome c-555 apparently did not bind to the flavocytochromes c. The rate constant for reduction by lumiflavin radical of horse cytochrome c complexed to flavocytochrome c was about twofold smaller than for reduction of horse cytochrome c alone. Flavocytochrome c was itself unreactive with exogenous flavin semiquinones. The ionic strength dependence of the reduction of the complex by FMN radical was also smaller than for horse cytochrome c in the absence of flavocytochrome c. Sulfite, which forms an adduct with the protein-bound FAD (FAD is bound in an 8-alpha-S-cysteinyl linkage), did not affect the reduction of horse cytochrome c in its complex with flavocytochrome c. We conclude that horse cytochrome c is reduced directly by exogenous flavins in its complex with flavocytochrome c, although the kinetics are slightly modified. These results are not unlike observations made with complexes of mitochondrial cytochrome c with cytochrome oxidase or cytochrome b5.  相似文献   

8.
Flavocytochrome c-sulfide dehydrogenases (FCSDs) are complexes of a flavoprotein with a c-type cytochrome performing hydrogen sulfide-dependent cytochrome c reduction in vitro. The amino acid sequence analysis revealed that the phylogenetic relationship of different flavoproteins reflected the relationship of sulfur-oxidizing bacteria. The flavoprotein SoxF of Paracoccus pantotrophus is 29-67% identical to the flavoprotein subunit of FCSD of phototrophic sulfur-oxidizing bacteria. Purification of SoxF yielded a homogeneous emerald-green monomeric protein of 42 797 Da. SoxF catalyzed sulfide-dependent horse heart cytochrome c reduction at the optimum pH of 6.0 with a k(cat) of 3.9 s(-1), a K(m) of 2.3 microM for sulfide, and a K(m) of 116 microM for cytochrome c, as determined by nonlinear regression analysis. The yield of 1.9 mol of cytochrome c reduced per mole of sulfide suggests sulfur or polysulfide as the product. Sulfide dehydrogenase activity of SoxF was inhibited by sulfur (K(i) = 1.3 microM) and inactivated by sulfite. Cyanide (1 mM) inhibited SoxF activity at pH 6.0 by 25% and at pH 8.0 by 92%. Redox titrations in the infrared spectral range from 1800 to 1200 cm(-1) and in the visible spectral range from 400 to 700 nm both yielded a midpoint potential for SoxF of -555 +/- 10 mV versus Ag/AgCl at pH 7.5 and -440 +/- 20 mV versus Ag/AgCl at pH 6.0 (-232 mV versus SHE') and a transfer of 1.9 electrons. Electrochemically induced FTIR difference spectra of SoxF as compared to those of free flavin in solution suggested a strong cofactor interaction with the apoprotein. Furthermore, an activation/variation of SoxF during the redox cycles is observed. This is the first report of a monomeric flavoprotein with sulfide dehydrogenase activity.  相似文献   

9.
The redox potentials of flavocytochromes c (FC) from Chromatium vinosum and Chlorobium thiosulfatophilum have been studied as a function of pH. Chlorobium FC has a single heme which has a redox potential of +98 mV at pH 7 (N = 1) that is independent of pH between 6 and 8. The average two-electron redox potential of the flavin extrapolated to pH 7 is +28 mV and decreases 35 mV/pH between pH 6 and 7. The anionic form of the flavin semiquinone is stabilized above pH 6. The redox potential of Chromatium FC is markedly lower than for Chlorobium. The two hemes in Chromatium FC appear to have a redox potential of 15 mV at pH 7 (N = 1), although they reside in very different structural environments. The hemes of Chromatium FC have a pH-dependent redox potential, which can be fit in the simplest case by a single ionization with pK = 7.05. The flavin in Chromatium FC has an average two-electron redox potential of -26 mV at pH 7 and decreases 30 mV/pH between pH 6 and 8. As with Chlorobium, the anionic form of the flavin semiquinone of Chromatium FC is stabilized above pH 6. The unusually high redox potential of the flavin, a stabilized anion radical, and sulfite binding to the flavin in both Chlorobium and Chromatium FCs are characteristics shared by the flavoprotein oxidases. By analogy with glycolate oxidase and lactate dehydrogenase for which there are three-dimensional structures, the properties of the FCs are likely to be due to a positively charged amino acid side chain in the vicinity of the N1 nitrogen of the flavin.  相似文献   

10.
Escherichia coli harbors two highly conserved homologs of the essential mitochondrial respiratory complex II (succinate:ubiquinone oxidoreductase). Aerobically the bacterium synthesizes succinate:quinone reductase as part of its respiratory chain, whereas under microaerophilic conditions, the quinol:fumarate reductase can be utilized. All complex II enzymes harbor a covalently bound FAD co-factor that is essential for their ability to oxidize succinate. In eukaryotes and many bacteria, assembly of the covalent flavin linkage is facilitated by a small protein assembly factor, termed SdhE in E. coli. How SdhE assists with formation of the covalent flavin bond and how it binds the flavoprotein subunit of complex II remain unknown. Using photo-cross-linking, we report the interaction site between the flavoprotein of complex II and the SdhE assembly factor. These data indicate that SdhE binds to the flavoprotein between two independently folded domains and that this binding mode likely influences the interdomain orientation. In so doing, SdhE likely orients amino acid residues near the dicarboxylate and FAD binding site, which facilitates formation of the covalent flavin linkage. These studies identify how the conserved SdhE assembly factor and its homologs participate in complex II maturation.  相似文献   

11.
The third amino acid sequence of a high potential iron-sulfur protein, that of the non-sulfur purple photosynthetic bacterium Rhodopseudomonas gelatinosa, has been determined. It consists of a single polypeptide chain of 74 amino acid residues, which is slightly smaller than the high potential iron-sulfur proteins from the sulfur purple bacteria Chromatium vinosum (85 residues) and Thiocapsa pfennigii (81 residues). The sequence of the gelatinosa protein is similar to the C. vinosum and T. pfennigii proteins with 38% and 37% identically matching residues, although six gaps are proposed for the comparison (the C. vinosum and T. pfennigii proteins have 44% identically matching residues out of 73 positions compared with only one 4-residue gap). Only 17 redisues, including the 4 cystein residues essential for binding the four-iron-sulfur chromophore, are invariant in the three known sequences. A discussion of the role of conserved residues in maintenance of the three-dimensional structure and in electron transport is presented.  相似文献   

12.
The novel genes soxFGH were identified, completing the sox gene cluster of Paracoccus pantotrophus coding for enzymes involved in lithotrophic sulfur oxidation. The periplasmic SoxF, SoxG, and SoxH proteins were induced by thiosulfate and purified to homogeneity from the soluble fraction. soxF coded for a protein of 420 amino acids with a signal peptide containing a twin-arginine motif. SoxF was 37% identical to the flavoprotein FccB of flavocytochrome c sulfide dehydrogenase of Allochromatium vinosum. The mature SoxF (42,832 Da) contained 0.74 mol of flavin adenine dinucleotide per mol. soxG coded for a novel protein of 303 amino acids with a signal peptide containing a twin-arginine motif. The mature SoxG (29,657 Da) contained two zinc binding motifs and 0.90 atom of zinc per subunit of the homodimer. soxH coded for a periplasmic protein of 317 amino acids with a double-arginine signal peptide. The mature SoxH (32,317 Da) contained two metal binding motifs and 0.29 atom of zinc and 0.20 atom of copper per subunit of the homodimer. SoxXA, SoxYZ, SoxB, and SoxCD (C. G. Friedrich, A. Quentmeier, F. Bardischewsky, D. Rother, R. Kraft, S. Kostka, and H. Prinz, J. Bacteriol. 182:4476-4487, 2000) reconstitute a system able to perform thiosulfate-, sulfite-, sulfur-, and hydrogen sulfide-dependent cytochrome c reduction, and this system is the first described for oxidizing different inorganic sulfur compounds. SoxF slightly inhibited the rate of hydrogen sulfide oxidation but not the rate of sulfite or thiosulfate oxidation. From use of a homogenote mutant with an in-frame deletion in soxF and complementation analysis, it was evident that the soxFGH gene products were not required for lithotrophic growth with thiosulfate.  相似文献   

13.
The amino acid sequence of the cytochrome c' from Alcaligenes sp. N.C.I.B. 11015 (Iwasaki's ;Pseudomonas denitrificans') has been determined. This organism is the only non-photosynthetic bacterium in which the protein has been found. The protein consists of a single polypeptide chain of 127 residues, with a single haem covalently attached to two cysteines. Unlike normal cytochromes c, the haem attachment site is very close to the C-terminus. The amino acid sequence around the haem attachment site is very similar to that of Chromatium vinosum D cytochrome c'. Detailed evidence for the amino acid sequence of the protein has been deposited as Supplementary Publication SUP 50022 at the British Library (Lending Division), (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5.  相似文献   

14.
An amino acid sequence is proposed for the cytochrome c' from the photosynthetic purple sulphur bacterium Chromatium vinosum strain D. It is single polypeptide chain of 131 residues, with haem-attachment cysteine residues at positions 121 and 124. The results discredit an earlier report [Dus, Bartsch & Kamen (1962) J. Biol. Chem 237, 3083--3093] of a di-haem peptide sequence from this protein. The sequence belongs to the same class as the published Alcaligenes and Rhodospirillum rubrum cytochrome c' squences, but the resemblance is not close. Detailed evidence for the amino acid sequence of the protein has been deposited as Supplementary Publication SUP 50,093 (15 pp.) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1978) 169, 5.  相似文献   

15.
Spectroscopic evidence is presented which demonstrates the binding of cyanide to the ferric cytochrome c' from Chromatium vinosum. The cytochrome was shown to bind one equivalent of cyanide with an equilibrium constant of 2.1 X 10(4) at pH 7.0 and 25 degrees C. This finding represents the first observation of the binding of an anionic ligand to the heme iron in a ferric cytochrome c'. These results suggest that the binding site of the ferric Chromatium cytochrome c' may be significantly more accessible than previously indicated.  相似文献   

16.
Chromatium vinosum, an anaerobic photosynthetic purple sulfur bacterium, resembles aerobic bacterial cells in that it has an NADP-thioredoxin system composed of a single thioredoxin which is reduced by NADPH via NADP-thioredoxin reductase. Both protein components were purified to homogeneity, and some of their properties were determined. Chromatium vinosum thioredoxin was slightly larger than other bacterial thioredoxins (13 versus 12 kilodaltons) but was similar in its specificity (ability to activate chloroplast NADP-malate dehydrogenase more effectively than chloroplast fructose-1,6-bisphosphatase) and immunological properties. As in other bacteria, Chromatium vinosum NADP-thioredoxin reductase was an arsenite-sensitive flavoprotein composed of two 33.5-kilodalton subunits, that required thioredoxin for the NADPH-linked reduction of 5,5'-dithiobis(2-nitrobenzoic acid). Chromatium vinosum NADP-thioredoxin reductase very effectively reduced several different bacterial-type thioredoxins (Escherichia coli, Chlorobium thiosulfatophilum (this name has not been approved by the International Committee of Systematic Bacteriology), Rhizobium meliloti) but not others (Clostridium pasteurianum, spinach chloroplast thioredoxin m). The results show that Chromatium vinosum contains an NADP-thioredoxin system typical of evolutionarily more advanced microorganisms.  相似文献   

17.
The 61-residue amino acid sequence of Rhodospirillum tenue, strain 2761, high-redox-potential ferredoxin (HiPIP) is GTNAAMRKAFNYQDTAKNGKCSGCAQFVPGASPTAAGGCKVIPGDNEIAPGGYCDAFIVKK. It differs from that of R. tenue strain 3761 by 16 amino acid substitutions plus two single-residue deletions. This 26% sequence difference is similar to that observed among separate species of chromatiaceae such as Chromatium vinosum, C. gracile, and Thiocapsa roseopersicina, and is suprising because there are no distinguishing microbiological characteristics separating these two R. tenue strains. The most interesting amino acid substitution in R. tenue 2761 HiPIP is Gly for Asn 45 (C. vinosum numbering). Besides the four cysteines required to bind the four iron-four sulfur cluster, only Tyr 19, Asn 45, and Gly 75 are absolutely conserved in the nine previously determined HiPIP sequences. If HiPIP is used as a measure of divergence of species, then R. tenue and C. vinosum are the most distant purple bacteria examined. Quite the opposite conclusion follows based on the sequences of the cytochromes c'. It is suggested that this anomaly is more likely owing to a change in function for HiPIP with subsequently rapid evolutionary change than to a relatively recent transfer of the cytochrome c' gene between species.  相似文献   

18.
The pet operon, encoding the prosthetic group-containing subunits of the cytochrome bc 1 complex of the purple sulfur bacterium Chromatium vinosum, has been cloned and sequenced. The 5 to 3 order of the C. vinosum genes is: petA, encoding the Rieske iron-sulfur protein; petB, encoding cytochrome b; and petC, encoding cytochrome c1. Cytochrome b is the best conserved subunit of the C. vinosum complex, when compared to the corresponding proteins from four photosynthetic purple non-sulfur bacteria (70 to 74% identity). Identities for the C. vinosum Rieske protein and those from purple non-sulfur bacteria range from 60 to 64%. The C-terminal region of the C. vinosum Rieske protein is quite similar to those of purple non-sulfur bacteria, while the N-terminal region is more closely related to mitochondrial Rieske proteins of organisms such as Neurospora crassa. Cytochrome c1 is the least well-conserved protein of the C. vinosum cytochrome bc1 complex, with identities ranging from 49 to 51% when compared to the corresponding proteins from purple non-sulfur bacteria. A well-conserved negatively-charged region of the cytochromes c1 of the purple non-sulfur bacteria, thought to be involved in binding the electron acceptor for the complex, cytochrome c2, is absent in C. vinosum cytochrome c1. A positive Southern hybridization using a probe constructed from the Rhodobacter sphaeroides fbcQ gene, which codes for a fourth subunit of the cytochrome bc1 complex in that bacterium, suggests the presence of a homologous gene in C. vinosum.  相似文献   

19.
The chicken cytochrome c oxidase subunit II (COII) was cloned and sequenced. A comparison of the deduced chicken COII sequence with 4 other vertebrate counterparts revealed 64-66% amino acid sequence homology and 68-70% nucleotide sequence homology. Four peptide segments each of nine amino acids long are highly conserved across the 5 species. A redox-center was formed by three of these highly conserved domains, which include two invariant Cys and two invariant His residues for copper ion coordination, three strictly conserved Glu or Asp residues for cytochrome c binding, and highly conserved aromatic acid residues for electron transfer.  相似文献   

20.
The gene (coxII) encoding subunit II of Rhodobacter sphaeroides cytochrome c oxidase (cytochrome aa3) has been isolated by screening a genomic DNA library in phage lambda with a probe derived from coxII of Paracoccus denitrificans. A 2-kb fragment containing coxII DNA was subcloned into the phage M13mp18 and the sequence determined. The 2-kb insert contains the entire coding region for coxII gene, including the ATG start codon and a TGA stop codon. The deduced amino acid (aa) sequence of subunit II of R. sphaeroides shows regions of substantial homology to the corresponding subunit of the bovine mitochondrial oxidase (63% overall) and P. denitrificans oxidase (68% overall). The postulated redox-active copper ion (CuA) binding site involving two Cys and two His residues (as well as an alternative Met residue) is conserved among these species, along with four invariant acidic aa residues (two Asp and two Glu) that may be involved in interactions with cytochrome c, and a region of aromatic residues (Tyr-Gln-Trp-Tyr-Trp-Gly-Tyr-Glu-Tyr) which is postulated to play a role in electron transfer. Hydropathy profile analysis suggests that while the bovine COXII secondary structure contains two transmembrane helices, the R. sphaeroides subunit II has a third such helix that may function as part of a signal sequence, as suggested for P. denitrificans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号