首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterocytozoon was 1st described in 1985, in an AIDS patient with intestinal malabsorption and diarrhea. Since then, additional cases of infection with this organism have been observed, but only in individuals with AIDS and malabsorption. Intestinal tissue biopsies were obtained from a 45-year-old man prior to AIDS diagnosis, again nine months later and then at autopsy two months later. When the biopsies were examined electron microscopically, both sets contained the microsporidian parasite. However, the 2nd intestinal biopsy, when wasting was much more severe, contained infection in almost every small intestinal enterocyte examined. The parasite was actively developing, allowing us to detail its life cycle. The parasite is apansporoblastic, polysporous and has characteristics not previously reported in the Microsporida: (1) an electron lucent inclusion not usually seen in Microsporida is prominent and always present; (2) extremely elongated sausage-shaped nuclei occur in the proliferative phase of parasite development; (3) the polar tube development uniquely involves the production of electron dense discs, yet results in the formation of a typical spore; and (4) polar tube development occurs prior to the final division of the multi-nucleate sporont. On the basis of these characteristics, we are placing this genus in a new family, Enterocytozoonidae, n. fam.  相似文献   

2.
Enterocytozoon was 1st described in 1985, in an AIDS patient with intestinal malabsorption and diarrhea. Since then, additional cases of infection with this organism have been observed, but only in individuals with AIDS and malabsorption. Intestinal tissue biopsies were obtained from a 45-year-old man prior to AIDS diagnosis, again nine months later and then at autopsy two months later. When the biopsies were examined electron microscopically, both sets contained the microsporidian parasite. However, the 2nd intestinal biopsy, when wasting was much more severe, contained infection in almost every small intestinal enterocyte examined. The parasite was actively developing, allowing us to detail its life cycle. The parasite is apansporoblastic, polysporous and has characteristics not previously reported in the Microsporida: (1) an electron lucent inclusion not usually seen in Microsporida is prominent and always present; (2) extremely elongated sausage-shaped nuclei occur in the proliferative phase of parasite development; (3) the polar tube development uniquely involves the production of electron dense discs, yet results in the formation of a typical spore; and (4) polar tube development occurs prior to the final division of the multi-nucleate sporont. On the basis of these characteristics, we are placing this genus in a new family, Enterocytozoonidae, n. fam.  相似文献   

3.
ABSTRACT. Intestinal microsporidiosis in patients diagnosed with acquired immunodeficiency syndrome (AIDS) and having chronic diarrhea was first reported in 1985 and the associated microsporidian was named Enterocytozoon bieneusi. the intracellular developmental cycle of E. bieneusi in enterocytes has been demonstrated and many cases have been reported worldwide. This report presents the life cycle of a second intestinal microsporidian, associated with the same symptoms, in five AIDS patients. This new microsporidian also infects enterocytes but its pathology and morphology differ from that of E. bieneusi. It involves lamina propria macrophages, fibroblasts, and endothelial cells and can disseminate to infect other parts of the body, e.g. the kidney and gall bladder. the parasite cycle includes development of rounded uninucleate and elongated bi- or tetranucleate cells without the formation of plasmodial stages. Sporogony is similar to the more typical development of microsporidia with sporoblast morphogenesis occurring after the last cell division. the development of cells within chambers of a septate, honeycomb-like, parasite-secreted fibrillar network and surrounded by a parasitophorous vacuole, however, is unique to this microsporidian, justifying the establishment of a new genus and species, Septata intestinalis n. g., n. sp.  相似文献   

4.
Microsporidia form a large and ubiquitous group of obligately intracellular parasitic eukaryotes, increasingly recognized as pathogens in humans. Transmission of invertebrate microsporidia to mammals has been considered impossible because temperature seemed to be a limiting factor for development. Nosema algerae, a microsporidian of anopheline mosquitoes, was cultured in human muscle fibroblasts at temperatures of 31 degrees C and 38 degrees C. This is the first record of an invertebrate microsporidian developing in human cells at a temperature above 36 degrees C. The ultrastructure of N. algerae growing in human muscle fibroblasts is similar to that of Brachiola vesicularum, a microsporidian species previously described in the muscle of an AIDS patient.  相似文献   

5.
Microsporidia are obligate intracellular parasites infecting a broad range of vertebrates and invertebrates. Various microsporidian species induce different clinical pictures in humans. The reason for this is not clear. It has been speculated that the different microsporidian species are transmitted by various routes, thus causing infections in different organs. Another possibility is that the diverse microsporidia have different tropisms to organ-specific cells, thus causing various diseases. In this study, we investigated the uptake of microsporidian spores by different cells with an immunofluorescence staining technique to investigate whether there is a difference between microsporidian species as well as between different cells. Using this technique, we were able to distinguish between intra- and extracellular microsporidian spores. All examined cell lines were able to internalize microsporidian spores, but the extent of internalization differed significantly between the cells. Although the results showed some patterns that correlate with the distribution of the parasites in humans, the different clinical pictures cannot be sufficiently explained by this phenomenon, so it seems more likely that the various clinical manifestations caused by the different microsporidian species are a consequence of different infection routes rather than of different affinities of the microsporidian species to different cells.  相似文献   

6.
The microsporidian Trachipleistophora hominis was isolated in vitro from the skeletal muscle of an AIDS patient. Since its discovery several more cases of myositis due to Trachipleistophora have been diagnosed but the source of infection is unknown. Morphologically, T. hominis most closely resembles Pleistophora and Vavraia, which undergo polysporous sporogony in sporophorous vesicles, but differs from these genera in the mode of formation of sporoblasts and in the morphology of the sporophorous vesicles. Alignment and analyses of the small subunit ribosomal DNA sequences of T. hominis and several other polysporoblastic genera indicated that its closest phylogenetic relationships were with species of the genera Pleistophora and Vavraia, in line with morphological predictions. The type species of the latter two genera are Pleistophora typicalis and Vavraia culicis; these are parasites of fish and mosquitoes, respectively. These results suggest two possible routes and sources of infection to AIDS patients, these being perorally by ingestion of inadequately cooked fish or crustaceans or percutaneously during a bloodmeal taken by a haematophagous insect. Support for an insect source has been provided by recent detection of a microsporidium from mosquitoes in human corneal tissue.  相似文献   

7.
The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but not all, lineages.  相似文献   

8.
Pathological alterations being similar to those that can be seen while hormonal dysbalance, particularly the increase of juvenile hormone (JH) titre, is one of the consequences of microsporidian infections. Though the increase of JH in insects infected with microsporidia has not been shown directly, there are many indirect proofs of this. It has been believed that JH is produced by microsporidia. But this has not been shown for microsporidia or for other endoparasites. In this article we want to propose another hypothesis. We suppose that during microsporidiosis the following events develop: exhaustion of host nutrition stores and other destructive consequences of microsporidian dwelling in host cells lead to the decrease of host biosynthetical and reparation activity in the infected cells and then to destructive alterations that can be seen by electro-microscopic methods. The infected cells are stressed and then the typical answer for many physiological stresses follows. Secretion of prothoracicotropic hormone by brain neurosecretory cells is inhibited and as a result the production and release of ecdysone is also inhibited and ecdysteroid titre decreases. The activity of JH-esterases is decreased and as a result the JH titre is increased. If microsporidian infection causes the stress in the host cells, the endocrine system will undoubtedly answer to this stress and this answer will definitely be the same as for all other stresses. Thus, in any case JH titre will be increased in infected insects independently of whether microsporidia produce JH or not. So, hormonal alterations in infected insects should be the consequence not of the microsporidian JH production but of the host response reaction to infection. We suppose that microsporidia do not differ from other parasites of insects and that they can not produce JH.  相似文献   

9.
The developmental stages of a recently described microsporidian from the nucleus of hematopoietic cells of salmonid fish were found to be unique among the Microsporida. All observed stages, including meronts, sporonts, and spores were in direct contact with the host cell nucleus (principally hematopoietic cells) of chinook salmon (Oncorhynchus tshawytscha). There is no parasitophorous vacuole and sporogony does not involve formation of a pansporoblastic membrane as with other members of the suborder Apansporoblastina. The extrusion apparatus differentiates prior to division of sporogonial plasmodia. The spores are ovoid (1 x 2 microns) and uninucleate, and possess a coiled polar tube with 8-12 turns. Developmental stages of the salmonid microsporidian are similar to those described for Enterocytozoon bieneusi as found in the intestinal mucosa of human AIDS patients. However, the intranuclear development, different cell types, and host infected clearly separate the salmonid and human parasites. Accordingly, the intranuclear parasite of salmonids is given the name Enterocytozoon salmonis n. sp. within the suborder Apansporoblastina.  相似文献   

10.
This article examines the way in which some biomedical ethicists have constructed sexually transmitted AIDS as a significant threat to women's health. We demonstrate that the familiar claim that'women are the fastest growing group'— whether of HIV-infected or of AIDS patients — is misleading because it obscures the distinction between proportional rate of growth and absolute increase. Feminist ethicists have suggested that misogyny of a male dominated health care system has led to underreporting of women AIDS cases in order to support these feminists'claim of AIDS being a real threat to women's health. Given the apparent rarity of tertiary transmissions of AIDS, the assertion that most or even many women are at significant risk for AIDS seem wrong. Particularly disturbing in this campaign is the fact that the theme of'risky sex'has been extended all the way to lesbians, even though their risk to acquire AIDS sexually is non-existent to minuscule. We argue that actual harm is done to women by this exaggeration of their risk of contracting AIDS sexually. The scare has led to misappropriations of scarce health care funds. AIDS disproportionately affects women who inject drugs, and who suffer other diseases, poverty and malnutrition. It would have been better to concentrate health care efforts in this area instead of'educating'women not at risk for AIDS how to prevent the acquisition of this disease. Unjustifiable AIDS anxiety has been created in women and has resulted in millions of unnecessary HIV-tests, and many broken relationships. This anxiety has inevitably reduced the pleasure of having sex for many women. We reject the kind of'victim ideology'that lies at the heart of this strategy which has, unfortunately, been supported by a number of influential feminist ethicists.  相似文献   

11.
12.
Actinomycosis has been rarely reported in patients with HIV/AIDS in contrast to other opportunistic and common pathogens. We report a case of esophageal ulcer disease, secondary to actinomycosis occurring in a patient with recurrent odynophagia. The diagnosis was made histologically only after repeated upper endoscopy with biopsies.  相似文献   

13.
Microsporidia are obligate intracellular parasites with the smallest known eukaryotic genomes. Although they are increasingly recognized as economically and medically important parasites, the molecular basis of microsporidian pathogenicity is almost completely unknown and no genetic manipulation system is currently available. The fish-infecting microsporidian Spraguea lophii shows one of the most striking host cell manipulations known for these parasites, converting host nervous tissue into swollen spore factories known as xenomas. In order to investigate the basis of these interactions between microsporidian and host, we sequenced and analyzed the S. lophii genome. Although, like other microsporidia, S. lophii has lost many of the protein families typical of model eukaryotes, we identified a number of gene family expansions including a family of leucine-rich repeat proteins that may represent pathogenicity factors. Building on our comparative genomic analyses, we exploited the large numbers of spores that can be obtained from xenomas to identify potential effector proteins experimentally. We used complex-mix proteomics to identify proteins released by the parasite upon germination, resulting in the first experimental isolation of putative secreted effector proteins in a microsporidian. Many of these proteins are not related to characterized pathogenicity factors or indeed any other sequences from outside the Microsporidia. However, two of the secreted proteins are members of a family of RICIN B-lectin-like proteins broadly conserved across the phylum. These proteins form syntenic clusters arising from tandem duplications in several microsporidian genomes and may represent a novel family of conserved effector proteins. These computational and experimental analyses establish S. lophii as an attractive model system for understanding the evolution of host-parasite interactions in microsporidia and suggest an important role for lineage-specific innovations and fast evolving proteins in the evolution of the parasitic microsporidian lifecycle.  相似文献   

14.
The study of HIV dynamics is one of the most important developments in recent AIDS research. It greatly improves our understanding of the pathogenesis of HIV infection. Recently it has been proposed to use HIV dynamics to evaluate the efficacy of antiviral treatments. Currently a large number of AIDS clinical trials on HIV dynamics are in development worldwide. However, many design issues that arise from HIV dynamic studies have not been addressed. In this paper, we study these problems using intensive Monte Carlo simulations and analytic methods. We evaluate a finite number of feasible candidate designs, which are currently used and proposed in AIDS clinical trials from different perspectives. We compare the viral dynamic marker and classical viral load change markers in terms of power for identifying treatment difference, asymptotic relative efficiency, and sensitivity. Finally we propose some useful suggestions for practitioners based on our results.  相似文献   

15.
Microsporidia are obligate intracellular parasites of most animal groups including humans, but despite their significant economic and medical importance there are major gaps in our understanding of how they exploit infected host cells. We have investigated the evolution, cellular locations and substrate specificities of a family of nucleotide transport (NTT) proteins from Trachipleistophora hominis, a microsporidian isolated from an HIV/AIDS patient. Transport proteins are critical to microsporidian success because they compensate for the dramatic loss of metabolic pathways that is a hallmark of the group. Our data demonstrate that the use of plasma membrane-located nucleotide transport proteins (NTT) is a key strategy adopted by microsporidians to exploit host cells. Acquisition of an ancestral transporter gene at the base of the microsporidian radiation was followed by lineage-specific events of gene duplication, which in the case of T. hominis has generated four paralogous NTT transporters. All four T. hominis NTT proteins are located predominantly to the plasma membrane of replicating intracellular cells where they can mediate transport at the host-parasite interface. In contrast to published data for Encephalitozoon cuniculi, we found no evidence for the location for any of the T. hominis NTT transporters to its minimal mitochondria (mitosomes), consistent with lineage-specific differences in transporter and mitosome evolution. All of the T. hominis NTTs transported radiolabelled purine nucleotides (ATP, ADP, GTP and GDP) when expressed in Escherichia coli, but did not transport radiolabelled pyrimidine nucleotides. Genome analysis suggests that imported purine nucleotides could be used by T. hominis to make all of the critical purine-based building-blocks for DNA and RNA biosynthesis during parasite intracellular replication, as well as providing essential energy for parasite cellular metabolism and protein synthesis.  相似文献   

16.
Microsporidia have attracted considerable attention because they infect a wide range of hosts, from invertebrates to vertebrates, and cause serious human diseases and major economic losses in the livestock industry. There are no prospective drugs to counteract this pathogen. Eukaryotic protein kinases (ePKs) play a central role in regulating many essential cellular processes and are therefore potential drug targets. In this study, a comprehensive summary and comparative analysis of the protein kinases in four microsporidia–Enterocytozoon bieneusi, Encephalitozoon cuniculi, Nosema bombycis and Nosema ceranae–was performed. The results show that there are 34 ePKs and 4 atypical protein kinases (aPKs) in E. bieneusi, 29 ePKs and 6 aPKs in E. cuniculi, 41 ePKs and 5 aPKs in N. bombycis, and 27 ePKs and 4 aPKs in N. ceranae. These data support the previous conclusion that the microsporidian kinome is the smallest eukaryotic kinome. Microsporidian kinomes contain only serine-threonine kinases and do not contain receptor-like and tyrosine kinases. Many of the kinases related to nutrient and energy signaling and the stress response have been lost in microsporidian kinomes. However, cell cycle-, development- and growth-related kinases, which are important to parasites, are well conserved. This reduction of the microsporidian kinome is in good agreement with genome compaction, but kinome density is negatively correlated with proteome size. Furthermore, the protein kinases in each microsporidian genome are under strong purifying selection pressure. No remarkable differences in kinase family classification, domain features, gain and/or loss, and selective pressure were observed in these four species. Although microsporidia adapt to different host types, the coevolution of microsporidia and their hosts was not clearly reflected in the protein kinases. Overall, this study enriches and updates the microsporidian protein kinase database and may provide valuable information and candidate targets for the design of treatments for pathogenic diseases.  相似文献   

17.
The population of managed honey bees has been dramatically declining in the recent past in many regions of the world. Consensus now seems to be that pathogens and parasites (e.g. the ectoparasitic mite Varroa destructor, the microsporidium Nosema ceranae and viruses) play a major role in this demise. However, little is known about host-pathogen interactions for bee pathogens and attempts to develop novel strategies to combat bee diseases have been hampered by this gap in our knowledge. One reason for this dire situation is the complete lack of cell cultures for the propagation and study of bee pathogens. Here we present a cell culture model for two honey bee-pathogenic microsporidian species, Nosema apis and N. ceranae. Our cell culture system is based on a lepidopteran cell line, which proved to be susceptible to infection by both N. ceranae and N. apis and enabled us to illustrate the entire life cycle of these microsporidia. We observed hitherto undescribed spindle-shaped meronts and confirmed our findings in infected bees. Our cell culture model provides a previously unavailable means to explore the nature of interactions between the honey bee and its pathogen complex at a mechanistic level and will allow the development of novel treatment strategies.  相似文献   

18.
For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.  相似文献   

19.
The objective of this study was to isolate fibrotic cells from human lung biopsies taken from different central pulmonary locations. A comparison was made of cell morphology, proteoglycan- and protein-expression in mesenchymal cell cultures obtained from human bronchial biopsies from patients with asthmatic-like disorders. We isolated viable cells from 10 out of the 12 biopsies. The fibroblast-like cells were positive for the biomarker a-smooth muscle actin, indicating that the cells were in an activated state. Two different types of fibroblast-like cells were observed from human pulmonary connective tissue; one of contractile type with lamellipodia that facilitate migration and a second cell type with an increased cell size, which most likely is of a synthetic phenotype. This is the first evidence of alterations in the proteoglycan expression pattern of versican, perlecan, biglycan and decorin which can be linked to the pathophysiological state of asthmatics proven by a combination of solid-phase extraction by reversed phase and by peptide mass fingerprinting using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Protein expression analysis using two-dimensional electrophoresis was interfaced to miniaturized sample preparation techniques using microcapillary extraction. Four protein groups were identified; cytoskeletal, adhesion, scavenger and metabolic proteins. These patient's proteomes showed a high degree of heterogeneity between patients but larger homogeneity within biopsies derived from different locations of the same patient.  相似文献   

20.
We describe an in vitro culture technique for a microsporidian isolated from the corneal biopsy of an HIV-infected patient. The corneal biopsy was inoculated into a monolayer culture of fibroblasts derived from newborn mouse brain and incubated at 37 degrees C in an atmosphere of 5% CO2. Minimum essential medium supplemented with 2% fetal bovine serum appeared to be an optimum medium for growth and maintenance of the parasite and for production of large numbers of spores. This microsporidian was identified as Trachipleistophora anthropophthera based on ultrastructural features. It forms two types of sporophorous vesicles and two types of spores simultaneously: polysporous vesicle type I with eight or more oval spores, 3.7-4.0 microm by 2.0-2.3 microm, and bisporous vesicle type II with two round spores, 1.7-2.2 microm by 1.6-2.0 microm in size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号