首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transverse sections (approximately 140 nm thick) of solid myosin filaments of the flight muscles of the fleshfly, Phormia terrae-novae, the honey bee, Apis mellifica, and the waterbug, Lethocerus uhleri, were photographed in a JEM model 200A electron microscope at 200 kV. The images were digitized and computer processed by rotational filtering. In each of these filaments it was found that the symmetry of the core and the wall was not the same. The power spectra of the images showed sixfold symmetry for the wall and threefold symmetry for the core of the filaments. The images of the filaments in each muscle were superimposed according to the sixfold center of the wall. These averaged images for all three muscles showed six pairs of subunits in the wall similar to those found in the wall of tubular filaments. From serial sections of the fleshfly filaments, we conclude that the subunits in the wall of the filaments represent subfilaments essentially parallel to the long axis of the filament. In each muscle there are additional subunits in the core, closely related to the subunits in the wall. Evaluation of serial sections through fleshfly filaments suggests that the relationship of the three subunits observed in the core to those in the wall varies along the length of the filaments. In waterbug filaments there are three dense and three less dense subunits for a total of six all closely related to the wall. Bee filaments have three subunits related to the wall and three subunits located eccentrically in the core of the filaments. The presence of core subunits can be related to the paramyosin content of the filaments.  相似文献   

2.
The cell wall of Lactobacillus brevis was revealed by electron microscopy to have an outer layer composed of a regular array. The morphological unit of the regular array appeared to consist of four spherical subunits, each about 2 nm in diameter, which were arranged in a tetragonal pattern about 4.5 by 7.0 nm in dimension. The regular array was composed of the tetragonal units in rows in two directions at an angle of about 75 degrees to each other. The average spacing between the rows was about 10 nm in one direction and about 7 nm in the other. The tetragonally arranged subunits were removed from the cell wall by treatment with guanidine hydrochloride, urea, or sodium dodecyl sulfate (SDS) but not by the action of ethylenediaminetetraacetate, nonionic detergents, or proteolytic enzymes except pepsin. The regular subunits were shown to be composed of a protein with a molecular weight of about 51,000 by SDS-polyacrylamide gel electrophoresis.  相似文献   

3.
The structural organization of Ectromelia virus DNA in infected mouse liver cells has been studied by using thin sections stained with the Feulgen-like osmium-ammine reaction. We found that in the cytoplasmic factories, free viral DNA was structured into completely extended filaments 2-3 nm thick. Viral DNA in immature virions, however, appeared to have a structural organization that superimposed that of eukaryotic chromatin. This was constituted by roundish subunits, with a diameter of 11-13 nm, composed of a DNA ring encircling an unstained inner core. The mature virion was composed of the same type of subunits, which were arranged in threads twisted into a figure 8 configuration. The distribution of basic proteins was also investigated with the acrolein silver-methenamine technique. In the viral particles only nucleoids were stained; a uniformly distributed positive reaction was observed in the cytoplasmic factories.  相似文献   

4.
As a first step toward freeze-trapping and 3-D modeling of the very rapid load-induced structural responses of active myosin heads, we explored the conformational range of longer lasting force-dependent changes in rigor crossbridges of insect flight muscle (IFM). Rigor IFM fibers were slam-frozen after ramp stretch (1000 ms) of 1-2% and freeze-substituted. Tomograms were calculated from tilt series of 30 nm longitudinal sections of Araldite-embedded fibers. Modified procedures of alignment and correspondence analysis grouped self-similar crossbridge forms into 16 class averages with 4.5 nm resolution, revealing actin protomers and myosin S2 segments of some crossbridges for the first time in muscle thin sections. Acto-S1 atomic models manually fitted to crossbridge density required a range of lever arm adjustments to match variably distorted rigor crossbridges. Some lever arms were unchanged compared with low tension rigor, while others were bent and displaced M-ward by up to 4.5 nm. The average displacement was 1.6 +/- 1.0 nm. "Map back" images that replaced each unaveraged 39 nm crossbridge motif by its class average showed an ordered mix of distorted and unaltered crossbridges distributed along the 116 nm repeat that reflects differences in rigor myosin head loading even before stretch.  相似文献   

5.
Two-dimensional crystals have been prepared from the photosynthetic reaction center of Rhodopseudomonas viridis. Filtered images of these crystals show individual subunits approximately 4.5 nm in diameter arranged at a center-to-center distance of 6.4 nm. Our previous studies suggested that each subunit within such a sheet corresponds to a single photosynthetic reaction center. Air-dried and freeze-etched shadowed preparations of the crystals yield images which are quite different from negatively stained material. Rotary-shadowed surfaces of the crystals show rows of wedge-shaped particles separated by 3 nm furrows. Two such wedge-shaped particles occupy the 12.1 X 12.9 nm area in which four negatively stained subunits are normally visualized. Close analysis of these shadowed pictures suggests that both the shadowed and negatively stained images can be accounted for by a single model of subunit arrangement within the crystal. Within each 12.1 X 12.9 nm unit cell, two subunits are placed near one surface of the sheet, and two others are near the other surface. All four subunits are visible in negative stain. When the surface is shadowed, only the two subunits which project above the surface of the sheet accumulate appreciable amounts of the heavy metal shadow. Because of their close position, one subunit shades the other, forming the wedge-shaped appearance characteristic of the crystal. The only arrangement consistent with both shadowed and negatively stained images is one in which the two raised subunits occupy positions at either end of a diagonal across the unit cell. The analysis of shadowed images indicates that the plane group of the crystals is P22(1)2(1).  相似文献   

6.
The ultrastructure of a hexagonal array in the exosporium from spores of a highly sporogenic mutant of Clostridium botulinum type A strain 190L was studied by electron microscopy of negatively stained exosporium fragments using optical diffraction and filtration. The exosporium was composed of three or more lamellae showing an equilateral, hexagonal periodicity. Images of the single exosporium layer from which the noise had been filtered optically revealed that the hexagonally arranged, morphological unit of the exosporium was composed of three globular subunits about 2.1 nm in diameter which were arranged at the vertices of an equilateral triangle with sides of about 2.4 nm. The morphological units were arranged with a spacing of about 4.5 nm. The adjacent globular subunits appeared to be interconnected by delicate linkers.  相似文献   

7.
The bacterial symbionts of many marine invertebrates contain ribulose 1,5-bisphosphate (RuBP) carboxylase but apparently no carboxysomes, polyhedral bodies containing RuBP carboxylase. In the few cases where polyhedral bodies have been observed they have not been characterised enzymatically. Polyhedral bodies, 50–90 nm in diameter, were observed in thin cell sections of Thiobacillus thyasiris the putative symbiont of Thyasira flexuosa and RuBP carboxylase activity was detected in both soluble and particulate fractions after centrifugation of cell-free extracts. RuBP carboxylase purified 90-fold from the soluble fraction was of high molecular weight and consisted of large and small subunits, with molecular weights of 53,110 and 11,100 respectively. Particulate RuBP carboxylase activity was associated with polyhedral bodies 50–100 nm in diameter, as revealed by density gradient centrifugation and electron microscopy. Therefore, the polyhedral bodies were inferred to be carboxysomes. Native electrophoresis of isolated carboxysomes demonstrated a major band which comigrated with the purified RuBP carboxylase and three minor bands of lower molecular weight. Sodium dodecyl-sulphate (SDS) gel electrophoresis of SDS-dissociated carboxysomes demonstrated nine major polypeptides two of which were the large and small subunits of RuBP carboxylase. The RuBP carboxylase subunits represented 21% of the total carboxysomal protein. The most abundant polypeptide had a molecular weight of 40,500. Knowledge of carboxysome composition is necessary to provide an understanding of carboxysome function.Abbreviations FPLC fast performance liquid chromatography - IB isolation buffer - PAGE polyacrylamide gel electrophoresis - RuBP carboxylase - ribulose 1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl-sulphate  相似文献   

8.
The karyotype of the erythrocytic stages of Plasmodium falciparum was determined to be 14 by counting the number of kinetochores in the mitotic spindle of young schizonts. Fourteen pairs of kinetochores were identified in 3-dimensional reconstructions of the spindle derived from serial longitudinal and transverse sections. Kinetochores were ovoid (45 X 25 nm) in transverse sections, measured 100 nm in longitudinal section, and were heptalaminate in structure. A pair of spindle microtubules passed through each kinetochore. In schizonts at anaphase, each pole of the mitotic spindle consisted of paired kinetic centers inserted on the nuclear membrane. The kinetic centers resembled nuclear pores, but were more electron dense and were associated with spherical masses of an electron-dense cytoplasmic material.  相似文献   

9.
Structural alterations induced in HeLa cells by herpes simplex virus and the mechanism whereby the virus is formed in the nucleus in crystal arrays were studied by electron microscopy with both the usual and negatively stained sections. Aggregates of granular and filamentous material were observed in the cytoplasm of infected cells with both sections. On the other hand, no remarkable alterations in appearance of the cytoplasmic ground substance were observed with the usual sections of infected cells. However, the cytoplasmic ground substance of infected cells when negatively stained consisted of granular material which was different in appearance from the spongy material constituting the cytoplasmic matrix of uninfected cells. In the nucleus of infected cells, complexes consisting of round bodies, amorphous material, aggregates of uniform granules in rows, and viral crystals were often observed near the nuclear membrane in both types of sections. Examinations of the granular aggregates with negatively stained sections suggested that each granule represents a subunit and that the several adjoining subunits (approximately eight) constitute the requirement for formation of a single viral capsid with a core. Thus, rapid and simultaneous formation of the core and capsid within the aggregate would replace the rows of the granules with the viral crystal. The advantages of negative staining of thin sections for visualization of fine structural alterations are discussed.  相似文献   

10.
Membrane specializations of the contact region between afferent nerve endings and supporting cells of the sensory epithelia of guinea-pig vestibular endorgans were examined by thin-section and freeze-fracture electron microscopy. The calyx-type nerve endings (C-endings) are separated from supporting cells (SC) by a 25-30 nm space. At irregular intervals along the upper lateral surface of supporting cells, the intercellular space narrows markedly to form special close contacts between the C-ending and SC plasma membranes. Freeze-fracture replicas reveal membrane specializations--orthogonal arrays of particulate units--in the region where the close intercellular contacts were found in sections. Orthogonal arrays consisting of from 5 to 20 units were observed on the cytoplasmic (P) fracture face of the lateral SC plasma membrane. These particulate units from a 12 x 12-nm square, and each unit is composed of four 6-nm subunits. Possible roles of the orthogonal arrays are discussed.  相似文献   

11.
Crest-like structures formed by internal layer of cell wall and cytoplasmic membrane were revealed in G1.tetani 471 by electron microscopy with the use of negative contrasting, ultrathin sections and freezing-etching. The transverse section of these crest-like structures was 56.3 nm and they were localized 4 to 6 in one row girdling the protoplast in different directions. Ring-like subunits located in rows with the periodicity of 5.9 nm, perpendicularly to the long axis of the cell, were revealed on the surface of the cell wall.  相似文献   

12.
The small negative CD bands around 297 nm of isolated 30-S and 50-S ribosomal subunits were precisely measured for three bacteria, Bacillus stearothermophilus, Bacillus subtilis and Escherichia coli Q 13. The intensities of the negative CD bands of 30-S subunits were always much greater than those of 50-S subunits irrespective of the bacterial strains, which may be related to the difference in comformations of rRNAs and proteins in the complexes between these subribosomal particles. The dissociation of 70-S ribosomes into two subunits by lowering Mg2+ concentration caused evident enhancement of intensity of the 297 nm CD band, which was completely reversed by the association of the two subunits into 70-S particles. The melting profiles of CD spectra 3 B. stearothermophilus and E. coli were compared and both subunits of the former were found to be more heat stable than those of the latter. It was found that 5 M urea and 0.5% sodium dodecyl sulfate (SDS) treatment caused considerable reduction of the negative CD intensity around 297 nm of 30-S subunits but no significant change of 50-S subunits, while no significant change was observed for the CD spectra of isolated 16-S and 23-S rRNAs by the same treatment. Effects of EDTA treatment and then addition of Mg2+ on the CD spectra and fluorescence emission spectra of the subunits were also observed and the contribution by the interaction between rRNA s and proteins in ribosomes to the small negative band around 297 nm was discussed.  相似文献   

13.
The cell walls of a number of filamentous, gliding cyanobacteria of the genus Oscillatoria were examined by transmission electron microscopy of ultrathin sections, of freeze-etched replicas, and of whole cells crushed between glass slides and negatively stained. All three techniques revealed the presence of a highly ordered array of parallel fibrils, seen in transverse sections to be situated between the peptidoglycan and the outer membrane. Approximately 200 individual fibrils, each 25 to 30 nm in width, form a parallel, helical array that completely surrounds each cyanobacterial filament, running at an angle of 25 to 30° to its long axis. This highly regular arrangement of the fibrillar layer may imply some underlying symmetry responsible for its organization. A possible source of such symmetry would be the peptidoglycan, and some form of interaction between this layer and the fibrils might provide the necessary scaffolding for the fibrillar array. In crushed, negatively stained samples of fresh cells, individual fibrils were seen outside the filament, released from the cell wall. These released fibrils were of the same width as those observed in situ but were in short lengths, mostly of 100 to 200 nm, and were invariably bent, sometimes even into U shapes, implying great flexibility. Negative staining of released fibrils showed no evidence that they were hollow tubes but did give some indication of a substructure, implying that they were composed of many subunits. The function of this fibrillar array is unknown, although its position in the cell wall, as well as the correspondence between the angle of the fibrils with respect to the long axis of the filament and the rotation of the filament during gliding, may imply an involvement in gliding motility.  相似文献   

14.
Analysis of the breakdown products of engineered viral particles can give useful information on the particle structure. We used various methods to breakdown both a recombinant enveloped virus and virus-like particles (VLPs) from two non-enveloped viruses and analysed the resulting subunits by fluorescence correlation spectroscopy (FCS). Analysis of the enveloped baculovirus, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), displaying the green fluorescent protein (GFP) fused to its envelope protein gp64 was performed in the presence and absence of 5 mM SDS and 25 mM DTT. Without treatment, the viral particle showed a diffusion time of 3.3 ms. In the presence of SDS, fluorescent subunits with diffusion times of 0.2 ms were observed. Additional treatment with DTT caused a drop in the diffusion time to 0.1 ms. Changes in the amplitude of the autocorrelation function suggested a 3-fold increase in fluorescent particle number when viral particles were treated with SDS, and a further 1.5-fold increase with additional treatment with DTT. Thus, the data showed that an average of 4.5 molecules of gp64-GFP was incorporated in the membrane of the modified baculovirus. Further, this suggests that each fluorescent gp64 trimer carries on average 1.5 fluorescent units. Similar experiments were carried out with two non-enveloped fluorescent virus-like particles (fVLPs) that displayed enhanced green fluorescent protein (EGFP). These, fVLPs of canine and human B19 parvoviruses were treated with 6 M urea and 5 mM SDS, respectively. Correspondingly, the original hydrodynamic radii of 17 and 14 nm were reduced to 9 and 5 nm after treatment. Here, the change in the amplitude of the autocorrelation curve suggested a 10-fold increase in particle number when viral particles of CPV were treated with 6 M urea at 50 degrees C for 10 min. For EGFP-B19, there was a decrease in the amplitude, accompanied by a 9-fold increase in the number of fluorescent units with SDS treatment. The results showed that approximately 10 and 9 fluorescent units were associated with the corresponding CPV and B19 VLPs. In summary, we were able to estimate the number of fluorescent subunits in a baculovirus containing a GFP-fusion with its gp64 envelope protein and in two different parvo-VLPs containing EGFP-fused with their VP2 capsid proteins.  相似文献   

15.
Summary After a specific time of glutaraldehyde-acrolein fixation, microtubule walls appear to be composed of single 6.5–7.5 nm diameter osmiophilic subunits. Variations in the duration of glutaraldehyde-acrolein and also glutaraldehyde-osmium fixation reveal a two layered wall containing osmiophilic subunits, 4.0–4.5 nm in diameter, arranged radially, in tandem. The double-layered wall is demonstrated by microdensitometer traces. These observations are discussed in relation to previously proposed models of microtubule substructure.  相似文献   

16.
The structure of the major protein of the pellicular membrane of Leishmania tropica was investigated. This protein is composed of two polypeptides, of ca. 50,000 d molecular weight, that were found to cross-react immunologically with the α and β subunits of pig brain tubulin. The polypeptides and pig brain tubulin subunits were partially digested with S. aureus V8 protease, and the peptides obtained analysed by SDS-polyacrylamide gel electrophoresis. A comparison of the patterns showed that the β subunits of Leishmania and pig tubulin have very similar primary structures, while the α subunits have evolved divergently. These experiments demonstrate that the major polypeptides found in the pellicular membrane of L. tropica are α and β subunits of tubulin. Immuno-electron microscopy indicates that the tubulin is located in the microtubules associated with the pellicular membrane of Leishmania. Arrays of microtubules were prepared by nonionic detergent treatment of the cells and observed by electron microscopy after negative staining. Optical diffraction reveals a 5 nm spacing between protofilaments in the microtubule and a 4 nm axial periodicity corresponding to the tubulin subunits. The pitch of the shallow left-hand three-start helix is 12°. A distance of 47 nm separates each microtubule from the next. These data show that the dimensions and supramolecular organization of the tubulin subunits in the microtubules are identical in the pellicular membrane of L. tropica and in mammalian brain.  相似文献   

17.
A methylviologen and 8-hydroxy-5-deazaflavin(F420)-reducing hydrogenase was purified over 800-fold to near homogeneity from the archaebacterium Methanococcus voltae with 10 U mg-1 F420-reducing activity. It is the only hydrogenase in this organism. The enzyme showed Km values of 16 microM for F420 and 1.2 mM for methylviologen. A turnover number of 1050 min-1 was calculated for the minimal active unit. The protein tends to aggregate. The molecular mass of the minimal active unit is 105 kDa. Larger molecules of 745 kDa were regularly observed. The enzyme was resolved into subunits with molecular masses of 55 kDa, 45 kDa, 37 kDa and 27 kDa by SDS/polyacrylamide gel electrophoresis. Reversible conversion of an anionic into an uncharged form was observed by DEAE-cellulose chromatography with concomitant changes in substrate specificities. The methylviologen-reducing activity was heat-resistant up to 65 degrees C and was not affected by antiserum raised against the native enzyme, while F420 reduction was inactivated by both treatments. Nickel and selenium contents were determined as 0.6-0.7 mol each, FAD content as 1 mol and iron as 4.5 mol/mol protein (105 kDa), respectively. Electron micrographs taken from the purified enzyme show ring-shaped molecules of 18 nm diameter, which represent the high-molecular-mass species of the enzyme.  相似文献   

18.
《FEBS letters》1985,193(2):261-266
L-Leucine dehydrogenase from Bacillus cereus was examined in the electron microscope. The quaternary structure reveals a molecule that is built up from 8 subunits, identical in mass, arranged in 2 layers which are oriented mainly in a staggered form. In each layer subunits are positioned at the vertices of a square, leaving free a central protein-deficient region of 2.6 nm in diameter. The enzyme measures 11.1 nm in diagonal and 9.0 nm in edge length. Mean subunit diameter is 4.0 nm. The overall shape is a cube, slightly compressed, with 90% edge length in height.  相似文献   

19.
20.
Urease purified from Helicobacter pylori by differential ultracentrifugation and fast pressure liquid chromatography was composed of subunits with apparent molecular weights (MrS) of 66,000 and 30,000. Electron microscopy of this purified material demonstrated that it formed disc-shaped macromolecular aggregates that were approximately 13 nm in diameter and 3 nm thick. Images of both negatively stained and shadowed preparations indicated that the discs tended to stack to form pairs and then these pairs further aggregated to form four-disc stacks. This stacking of subunits explains the heterogeneity observed previously in the molecular weight of urease preparations. In some negatively stained preparations there were also some smaller (approximately 8-nm-diameter) annular units present, which may represent individual urease units or possibly an aggregate of one of the two subunits from which urease is constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号