首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of cobalt uptake was investigated using cells of the giant alga Chara corallina in which it is possible to resolve separately uptake by the cell wall and actual influx across the cell membrane. The absorption of 60Co by Chara cells appeared to saturate within 2 h, but this was mainly due to rapid uptake into the cell wall which accounted for 87–92% of the total activity. Even after prolonged desorption most of the cell‐associated 60Co was found on the cell wall. The intracellular distribution of absorbed 60Co was investigated by fractionating the cell into cytoplasm and vacuole. It was shown that 60Co influx to the vacuole occurs simultaneously with influx to the cytoplasm. The transported species appears to be Co2+ rather than the less charged Co(OH)+ or Co(OH)2. 60Co influx is pH dependent (optimum pH 7–9), and is sensitive to some other divalent metals. Influx from solutions containing 1 µ M 60Co was inhibited by 5 µ M Cd2+, Cu2+, and Zn2+, but Mn2+ and Ni2+ had no significant effect. The sensitivity of Co uptake to N ‐ethyl maleimide (NEM) and cysteine suggests that the transport system involves direct binding of CO2+ to ‐SH groups.  相似文献   

2.
In soybean ( Glycine max L.), salicylic acid (SA) is converted primarily to SA 2- O - β - d -glucose (SAG) in the cytoplasm and then accumulates exclusively in the vacuole. However, the mechanism involved in the vacuolar transport of SAG has not been investigated. The vacuolar transport of SAG was characterized by measuring the uptake of [14C]SAG into tonoplast vesicles isolated from etiolated soybean hypocotyls. The uptake of SAG was stimulated about six-fold when MgATP was included in the assay media. In contrast, the uptake of SA was only stimulated 1.25-fold by the addition of MgATP and was 2.2-fold less than the uptake of SAG providing an indication that the vacuolar uptake of SA is promoted by glucosylation. The ATP-dependent uptake of SAG was inhibited by increasing concentrations of vanadate (64% inhibition in the presence of 500 μ M ) but was not very sensitive to inhibition by bafilomycin A1 (a specific inhibitor of vacuolar H+-ATPase; EC 3.6.1.3), and dissipation of the transtonoplast H+-electrochemical gradient. The SAG uptake exhibited Michaelis–Menten-type saturation kinetics with a K m value of 90 μ M for SAG. SAG uptake was inhibited 60% by β ‐estradiol 17-( β - d -glucuronide), but glutathione conjugates and uncharged glucose conjugates were only slightly inhibitory. Based on the characteristics of SAG uptake into soybean tonoplast vesicles it is likely that this uptake occurs through an ATP-binding cassette transporter-type mechanism. However, this vacuolar uptake mechanism is not universal since the uptake of SAG by red beet ( Beta vulgaris L) tonoplast vesicles appears to involve an H+-antiport mechanism.  相似文献   

3.
Abscisic acid (ABA) induces a transient stimulation of 86Rb+ from isolated guard cells of Commelina communis L. When ABA is added after 30–50 min of wash-out in the absence of ABA, when tracer is almost entirely vacuolar, its effects on vacuolar release are measured. When ABA is added early in the wash-out (at 2–4 min), when both cytoplasm and vacuole are labelled, the resulting efflux includes both vacuolar and cytoplasmic contributions. Detailed comparison of rates of efflux in the absence of ABA, and in the presence of ABA added early and late in the wash-out, allows the effects of ABA on plasmalemma and tonoplast fluxes to be assessed. Three effects of ABA can be distinguished: these are stimulation of the 86Rb+ flux from vacuole to cytoplasm (by twofold to 6.7-fold); stimulation of the plasmalemma efflux, by up to twofold, a smaller factor than that of the tonoplast effect and variable between experiments; and a doubling of the half-time for cytoplasmic exchange in ABA, taken to reflect an increase in cytoplasmic ion content as ions flood out of the vacuole. Concentrations of ABA of 0.1–0.2 µM and 1–10 µM are equally effective in the stimulation of plasmalemma efflux, but the effects on tonoplast fluxes are both delayed and reduced at low external concentrations of ABA. It is argued that the delay reflects the need for a threshold internal ABA to be reached before the initiation of vacuolar release, and the reduction reflects the sensitivity of the extent of activation of tonoplast ion channels to concentration of internal ABA. It is likely that the plasmalemma change is mediated by external ABA, and could be the result of the modulation of the stretch-activated channel suggested previously.  相似文献   

4.
Abstract: Voltage-dependent 45Ca2+ uptake into rat whole brain synaptosomes was measured after 3-s KCl-induced depolarization to investigate possible inhibitory effects of calcium antagonists, nitrendipine, nimodipine, and nisoldipine. At a Ca2+ concentration of 1.2 m M , nitrendipine, in concentrations ranging from 0.1 n M to 10 μ M , had no effect on 45Ca2+ uptake. When the Ca2+ concentration was lowered to 0.06 and 0.12 m M , nitrendipine, 10 μ M , inhibited 45Ca2+ uptake in response to 109 m M KCl depolarization. However, in a separate concentration response study, nitrendipine, nimodipine, and nisoldipine, 0.1 n M to 10 μ M , failed to alter the uptake of 45Ca2+ (0.06 m M Ca2+) into 30 m M KCl-depolarized synaptosomes. The high concentrations of these agents required to depress 45Ca2+ uptake indicate that the dihydropyridine calcium antagonists are considerably less potent in brain tissue than in peripheral tissue.  相似文献   

5.
Abstract Two strains of the strictly respiratory bacterium Alcaligenes eutrophus were used to study the kinetics of 63Ni2+ uptake and efflux: the wild type strain N9A and its transconjugant N9A-M243, which harbors plasmid pMOL28.1 encoding constitutive resistance to nickel. When incubated aerobically in 1 μM NiCl2 N9A accumulates high, M243 negligibly small amounts of nickel. When exposed to 1 μM NiCl2 anaerobically, after preincubation at anoxic conditions for 24 h, both strains accumulate almost the same amounts. Aeration results in instantaneous, rapid efflux by M243, but renewed uptake of nickel by N9A. The results suggest that in M243 under normal aerobic conditions two constitutive energy-dependent cation transport systems are functioning concomitantly; a chromosomally determined nickel uptake system and a plasmid-mediated nickel efflux system.  相似文献   

6.
Iron inefficiency in the maize ( Zea mays L.) mutant ysl is caused by a defect in the uptake system for Fe-phytosiderophores. To characterize this defect further, the uptake kinetics of Fe-phytosiderophores in ysl was compared to the Fe-efficient maize cultivar Alice. Short-term uptake of 59Fe-labeled Fe-deoxymugineic acid (Fe-DMA) was measured over a concentration range of 0.03 to 300 μM. Iron uptake in Fe-deficient plants followed Michaelis-Menten kinetics up to about 30 μM and was linear at higher concentrations, indicating two kinetically distinct components in the uptake of Fe-phytosiderophores. The saturable component had similar Km (∼ 10 μM) in both genotypes. In contrast. Vmax was 5.5 μmol Fe-DMA g−1 dry weight [30 min]−1 in Alice, but only 0.6 μmol Fe-DMA g−1 dry weight [30 min]−1 in ysl. Uptake experiments with double-labeled 59Fe-[14C]DMA suggest that in both cultivars Fe-DMA was taken up by the roots as the intact chelate. The results indicate the existence of a high-affinity and a low-affinity uptake system mediating Fe-phytosiderophore transport across the root plasma membrane in maize. Apparently, the mutation responsible for Fe inefficiency in ysl affected high-affected uptake and led to a decrease in activity and/or number of Fe-phytosiderophore transporters.  相似文献   

7.
The effects of water hardness (9 and 220 mgl−1 as CaCO3) upon zinc exchange in brown trout exposed to 0.77 μmol Zn 1−1 have been investigated using artificial soft water (<49.9 μmol Ca l-1, <40.1 μmol Mg 1−1) and mains hard water (1671.7 μmol Ca 1−1, 493.6 μmol Mg 1−1) of known composition. Both hard and soft water-adapted fish exhibited a bimodal pattern of net zinc influx. Net zinc influxes during both fast and slow uptake phases were significantly greater ( P <0.001) in soft (82.9 and 6.2 μmol Zn 100 g−1 h−1) than in hard water (46.3 and 2.4 μmol Zn 100 g h−1). Zinc efflux (- 0.2 μmol Zn 100 g−1 h−1) was enhanced only in hard water during the slow net influx phase.
Brown trout exposed to zinc in hard water and placed in metal-free media exhibited a greater net efflux (- 25.6 μmol Zn 100 g−1 h−1) of the metal than did fish in soft water (-4.2 μmol Zn 100 g−1 h−1) treated in the same manner. Tissue 65Zn activities reflected both the differences in uptake and excretion rates of the metal between hard and soft water fish. During zinc exposure (0.77 μmol Zn 1−1) high water hardness reduced tissue burdens of the metal by reducing net branchial influx, and enhancing efflux of the metal in hard water fish.  相似文献   

8.
The intracellular compartmentation of boron (B) in roots of sunflower plants precultured with 100 μ M B (high B) or 1 μ M B (low B) was studied using two independent approaches. In the first approach, short-term efflux studies using the stable isotopes 11B and 10B were carried out. In roots of high B plants, the calculated concentrations of B (nmol gFW −1) were 52.6 in the cell wall, 7.5 in the vacuole, 27.1 in the cytosol and 48.0 in the free space. In roots of low B plants, the concentrations of B (nmol gFW −1) were 43.4 in the cell wall, 2.8 in the vacuole, 17.9 in the cytosol and almost zero in the free space. Although the B supply differed by a factor 100, the B concentrations in the cytosol and the vacuole of low B plants were 66 and 37% of the respective concentrations in high B plants. This suggests an additional role for B in plant metabolism, besides its function in the cell wall. In the second approach, root B pools (cell sap and water-insoluble residue) were determined for comparison, and found to be in good agreement with the results from the efflux study.  相似文献   

9.
Abstract: Cells dissociated from the postnatally developing rat cerebellum retain their high-affinity carrier-mediated transport systems for [3H]GABA ( K t=1.9 μM, V = 1.8 pmol/106 cells/min) and [3H]glutamate ( K t= 10 μM, V = 7.9 pmol/106 cells/min). Using a unit gravity sedimentation technique it was demonstrated that [3H]GABA was taken principally into fractions that were enriched in inhibitory neurons (Purkinje, stellate and basket cells). [3H]β-alanine (which is taken up specifically by the glial GABA transport system) and [3H]glutamate were concentrated by glial-enriched fractions. However [3H]glutamate uptake was minimal in fractions enriched in precursors of granule cells, which may utilise this amino acid as their neurotransmitter. These results are discussed in relation to reports of high-affinity [3H]glutamate uptake by glia. The role of glutamate transport in glutamatergic cells is also considered. The data suggest that high-affinity glutamate transport is a property of glial cells but not granule neurons.  相似文献   

10.
Abstract. Lipophilic cations inhibit nocturnal malic acid accumulation in leaf cells of the Crassulacean Acid Metabolism plant Kalanchoë tubiflora . perhaps by interacting directly or indirectly with active malic acid transport into the vacuoles. Lipophilic cations do not affect passive efflux of malic acid from the vacuoles. Membrane potentials are depolarized, oxygen uptake is stimulated by lipophilic cations and there may also be stomatal responses. Thus it is striking that lipophilic cations do not alter the stoichiometry of 2 titratable H : 1 enzymatically-determined malate2− during diurnal malic acid oscillations of Crassulacean Acid Metabolism in Kalanchoë . This suggests that coupling between protons and malate during transport into the vacuole must be tight. Transport as undissociated acid is unlikely because the dissociation equilibrium in the cytoplasm is largely on the side of malate2−. These results appear to suggest an intimate molecular interaction between a proton pump and a presumed malate2− translocator at the tonoplast of leaf cells with Crassulacean Acid Metabolism.  相似文献   

11.
Abstract: The rat ventral tegmentum (containing dendrites and somata of mesolimbic neurones) contained 1.3 μg/g of dopamine, which was reduced to 40% of the control level by reserpine. Slices of ventral tegmentum were able to accumulate and release (elevated potassium or protoveratrine A) exogenous [3H]dopamine. In parallel studies the uptake mechanism in ventral tegmentum was shown to be virtually identical to the nerve terminal uptake of [3H]dopamine by slices of nucleus accumbens. The release of [3H]dopamine was indistinguishable from that observed in substantia nigra, where there is substantial evidence for dendritic mechanisms. Basal adenylate cyclase activity was present, but dopamine-stimulated activity was not detected. A high GABA concentration (7.7 μmol/g) was present in ventral tegmentum, in conjunction with an uptake and a release mechanism for [3H]GABA. GABA and muscimol elicited a small, reproducible efflux of [3H]dopamine, but an interaction between dopamine and [3H]GABA efflux was not observed. The results are in accord with transmitter roles for dopamine and GABA in the somatoden-dritic area of mesolimbic dopaminergic neurons.  相似文献   

12.
The Uptake and Metabolism of Cysteine by Giardia lamblia Trophozoites   总被引:1,自引:0,他引:1  
ABSTRACT. The cysteine, cystine, methionine and sulfate uptake and cysteine metabolism of Giardia lamblia was studied. Initial experiments indicated that bathocuproine sulphonate (20 μM) added to Keister's modified TYI-S-33 medium supported the growth of G. lamblia at low L-cysteine concentration. This allowed the use of high specific activity radiolabeled L-cysteine for further studies. The analyses of L-cysteine uptake by G. lamblia indicate the presence of at least two different transport systems. The total cysteine uptake was non saturable, with a capacity of 3.7 pmoles per 106 cells per min per μM of cysteine, and probably represent passive diffusion. However, cysteine transport was partially inhibited by L-methionine, D-cysteine and DL-homocysteine. indicating that another system specific for SH-containing amino acids is also present. Cysteine uptake was markedly decreased in medium without serum. In contrast to cysteine, the uptake of L-methionine and sulfate were carried out by saiurable systems with apparent Km, of 71 and 72 μM, respectively, but the Vmax of the uptake of sulfate was six orders of magnitude lower than the Vmax of methionine uptake. Cystine was not incorporated into trophozoites. [35S]-labeled L-cysteine and L-methionine, but not [35S]sulfate, were incorporated into Giardia proteins, indicating that the parasite lacks the capacity to synthesize cysteine or methionine from sulfate. Neither cystathionine γ lyase nor crystathionine γ synthase activities was detected in homogenates of Giardia lamblia , suggesting that the transsulfuration pathway is not active and there is no conversion of methionine to cysteine. Our data indicate that cysteine is essential for Giardia because the parasite: a) cannot take up cystine, and b) cannot synthesize cysteine de novo.  相似文献   

13.
The effects of copper (CuCl2) on active and passive Rb+(86Rb+) influx in roots of winter wheat grown in water culture for 1 week were studied. External copper concentrations in the range of 10–500 μ M in the uptake nutrient solution reduced active Rb+ influx by 20–70%, while passive influx was unaffected (ca 10% of the Rb+ influx in the Cu-free solution). At external Rb+ concentrations of up to 1 m M , Cu exposure (50 μ M decreased Vmax to less than half and increased Km to twice the value of the control. Short Cu exposure reduced the K+ concentration in roots of low K+ status. Pretreatment for 5 min in 50 μ M CuCl2 prior to uptake experiments reduced Rb+ influx by 26%. After 60 min pretreatment with Cu, the corresponding reduction was 63%. Cu in the cultivation solution impeded growth, especially of the roots. The Cu concentration in the roots increased linearly with external Cu concentration (0–100 μ M ) while Cu concentration in the shoots was relatively unchanged. The K+ concentration in both roots and shoots decreased significantly with increased Cu in the cultivation solutions. Possible effects of Cu on membranes and ion transport mechanisms are discussed.  相似文献   

14.
Abstract: The release of preloaded [3H]glycine and [3H]taurine in response to a depolarising stimulus (12.5-50 m M KCl) has been studied in the superfused rat retina. High external potassium concentration immediately increased the spontaneous efflux of [3H]glycine, the effect of 50 m M K+ apparently being abolished by omitting calcium from the superfusing medium. In contrast, although high potassium concentrations increased the spontaneous emux of [3H]taurine from the superfused rat retina, this release was not evident until the depolarising stimulus was removed from the superfusing medium. The magnitude of this "late" release of [3H]taurine was dependent on external K+ concentrations, and appeared immediately after cessation of the stimulus irrespective of whether it was applied for 4, 8, or 12 min. Potassium (50 m M )-induced release of taurine appeared partially calcium-dependent, being significantly reduced (p < 0.01) but not abolished by replacing calcium with 1 mM EDTA in the superfusate. High-affinity uptake systems for both [3H]glycine and [3H]taurine were demonstrated in the rat retina in vitro ( K m values, 1.67 μ M and 2.97 μ M ; Vmax values, 19.3 and 23.1 nmol/g wet weight tissue/h, respectively). The results are discussed with respect to the possible neuro-transmitter roles of both amino acids in the rat retina.  相似文献   

15.
Toxicities of cadmium (Cd) and zinc (Zn) to the green alga Selenastrum capricornutum Printz were determined over 72 h in defined synthetic media buffered by citrate (FRAQCIT ; [citrate] = 100 μM or 5 μM) or nitrilotriacetate (FRAQNTA ; [NTA] = 5 μM). Algal sensitivity to free Cd2+ or free Zn2+ in FRAQCIT was much higher than in FRAQNTA. In parallel experiments, short-term intracellular uptake of radiolabeled 109Cd was measured as a function of time (0–30 min) in FRAQCIT and FRAQNTA; for a given free Cd2+ concentration (8, 250, or 610 nM), intracellular accumulation of Cd was consistently higher in FRAQCIT than in FRAQNTA. Under the same conditions, the alga accumulated 14C-labeled citrate almost linearly over a 2-h period. Loss of 109Cd from algal cells that had been prelabeled with the radionuclide occurred slowly, and the loss rate was insensitive to the presence or absence of citrate, indicating that the overall permeability of the algal membrane to Cd was unaffected by citrate. The enhanced bioavailability of Cd in the presence of citrate could be explained by membrane transport of a charged Cd–citrate complex, presumably by accidental transport.  相似文献   

16.
Abstract. The influence of indol-3yl-acetic acid (IAA) and abscisic acid (ABA) on the capacities of the cytoplasm and vacuole and their effects on unidirectional sodium fluxes across the plasmalemma and the tonoplast of aged red beet storage tissue was investigated. After loading the tissue in a labelled NaCl solution the efflux of radio-activity was measured in unlabelled NaCl. By means of compartmental analysis the capacities and fluxes were determined and compared with those obtained after loading and elution in the presence of IAA or ABA.
It was established that both IAA and ABA affect sodium transport across the principal cell membranes. Both hormones inhibited the efflux across the plasma-lemma, possibly by affecting a Na+ for H+ exchanging system. Efflux across the tonoplast was stimulated by IAA and influx across the same membrane was enhanced by ABA. It was suggested that IAA stimulated a proton pump at this level while the influence of ABA remained difficult to explain.  相似文献   

17.
The effects of the endogenous cannabinoid anandamide [arachidonylethanolamide (AEA)] on the function of nicotinic acetylcholine receptor (nAChR) were investigated using the 86Rb+ efflux assay in thalamic synaptosomes. AEA reversibly inhibited 86Rb+ efflux induced by 300 μM ACh with an IC50 value of 0.9 ± 2 μM. Pre-treatment with the cannabinoid (CB1) receptor antagonist SR141716A (1 μM), the CB2 receptor antagonist SR144528 (1 μM), or pertussis toxin (0.2 mg/mL) did not alter the inhibitory effects of AEA, suggesting that known CB receptors are not involved in AEA inhibition of nAChRs. AEA inhibition of 86Rb+ efflux was not reversed by increasing acetylcholine (ACh) concentrations. In radioligand binding studies, the specific binding of [3H]-nicotine was not altered in the presence of AEA, indicating that AEA inhibits the function of nAChR in a non-competitive manner. Neither the amidohydrolase inhibitor phenylmethylsulfonyl fluoride (0.2 mM) nor the cyclooxygenase inhibitor, indomethacin, (5 μM) affected AEA inhibition of nAChRs, suggesting that the effect of AEA is not mediated by its metabolic products. Importantly, the extent of AEA inhibition of 86Rb+ efflux was significantly attenuated by the absence of 1% fatty acid free bovine serum albumin pre-treatment, supporting previous findings that fatty acid-like compounds modulate the activity of nAChRs. Collectively, the results indicate that AEA inhibits the function of nAChRs in thalamic synaptosomes via a CB-independent mechanism and that the background activity of these receptors is affected by fatty acids and AEA.  相似文献   

18.
In Escherichia coli , lacZ operon fusions were isolated that were derepressed under iron repletion and repressed under iron depletion. Two fusions were localized in genes that formed an operon whose gene products had characteristics of a binding protein-dependent transport system. The growth defect of these mutants on TY medium containing 5 mM EGTA was compensated for by the addition of Zn2+. In the presence of 0.5 mM EGTA, only the parental strain was able to take up 65Zn2+. This high-affinity transport was energized by ATP. The genes were named znuACB (for zinc uptake; former name yebLMI ) and localized at 42 min on the genetic map of E. coli . At high Zn2+ concentrations, the znu mutants took up more 65Zn2+ than the parental strain. The high-affinity 65Zn2+ uptake was repressed by growth in the presence of 10 μM Zn2+. A znuA–lacZ operon fusion was repressed by 5 μM Zn2+ and showed a more than 20-fold increase in β-galactosidase activity when Zn2+ was bound to 1.5 μM TPEN [tetrakis-(2-pyridylmethyl) ethylenediamine]. To identify the Zn2+-dependent regulator, constitutive mutants were isolated and tested for complementation by a gene bank of E. coli . A complementing gene, yjbK of the E. coli genome, was identified and named zur (for zinc uptake regulation). The Zur protein showed 27% sequence identity with the iron regulator Fur. High-affinity 65Zn2+ transport of the constitutive zur mutant was 10-fold higher than that of the uninduced parental strain. An in vivo titration assay suggested that Zur binds to the bidirectional promoter region of znuA and znuCB .  相似文献   

19.
31P nuclear magnetic resonance (NMR) spectroscopy was used to estimate the amount of inorganic phosphate (Pi) present in the cytoplasm and vacuole of root tips and subapical root segments of pond pine ( Pinus serotina Michx.). In root tips of seedlings grown with 100 mmol m–3P (HP) the cytoplasmic Pi content, on a root volume basis, was ≈ 1·5 μ mol cm–3 and the vacuolar Pi content, on a root volume basis, was ≈ 3·4 μ mol cm–3. In root tips from Pi starved seedlings the cytoplasmic Pi content, on a root volume basis, was ≈ 0·75 μ mol cm–3; vacuolar Pi was too low to be reliably estimated. Similar results were obtained with subapical root segments; the Pi concentration in the cytoplasm was maintained at around 2 mol m–3 while that in the vacuole varied with Pi supply. This work demonstrates for the first time that quantitative measurements of the subcellular compartmentation of Pi can be made in young tissues of a woody species. The results indicate that cytoplasmic Pi levels are maintained across a range of external Pi supplies probably by withdrawing Pi stored in the vacuole.  相似文献   

20.
Changes in sugar uptake into strawberry fruits with maturation and the hormonal effect on uptake mechanisms, though important to fruit development, are not known. Therefore, the kinetics of sugar uptake into strawberry ( Fragaria x ananassa Duch cv. Nyoho) fruit tissue and the effects of abscisic acid (ABA) and indoleacetic acid (LAA) on the mechanism of uptake were investigated at 25 and 35 days after pollination (DAP). Uptake of 14C-sugar was measured over the concentration range of 2 to 30 m M. Uptake kinetics showed a biphasic response to increasing external concentration of 14C-sugars, and indicated the presence of P -chlorormercuribenzenesulfonic acid (PCMBS)-sensitive and PCMBS-insensitive uptake. The Km value for each sugar was in the range of 10 to 20 m M. Stage of development had no effect on Km. but Vmax for glucose decreased with maturation. Further, sucrose was not taken up through a PC-MBS-sensitive transport at 35 DAP. ABA, especially 10 μ M , at 25 DAP stimulated uptake of all sugars, mostly through enhanced PCMBS-insensitive uptake but not PC-MBS-sensitive uptake. In contrast to ABA, stimulation of sugar uptake by IAA was most effective at 1 μ M . The PCMBS-insensitive uptake of each sugar was also stimulated by IAA. Further, the PCMBS-sensitive uptake of glucose was enhanced. The developmental change of PCMBS-sensitive sugar uptake and the effect of ABA and IAA on uptake mechanism in this study are considered to be important in influencing the development and enlargement of fruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号