首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Levy  B J McCarthy 《Biochemistry》1976,15(11):2415-2419
Polyadenylated RNA was isolated from nuclei of cultured Drosophila cells, Schneider's line 2, and used as a template to synthesize a complementary DNA probe. Hybridization experiments were performed to study the relationship between nuclear and cytoplasmic RNA. About two-thirds of the nuclear polyadenylated RNA sequences exist in the cytoplasm. Experiments with fractionated cDNA probes demonstrated that RNA sequences that are frequent in the nucleus are also abundant in the cytoplasm. These findings are consistent with a precursor-product relationship in which some polyadenylated molecules in the nucleus are destined for the cytoplasm while other sequences are polyadenylated but not transferred.  相似文献   

2.
3.
The regional metabolism of high-molecular-weight RNA in the developing female rat brain was investigated after the intracranial injection of [32P]P1. The synthesis of polyadenylated RNA relative to high-molecular-weight RNA was determined after oligo(dT)-cellulose chromatography of total cellular high-molecular-weight RNA labelled after 4h. In both hypothalamus and cortex this synthesis was significantly higher during the first 10 days post partum than at subsequent ages. In both regions apparently more mRNA is synthesized in the young. The ratio of the specific radioactivity of cytoplasmic high-molecular-weight RNA relative to that of the nucleus, measured after a 48 h period of labelling, was considered to be an index of the nucleocytoplasmic transport of newly synthesized RNA [Berthold & Lim (1976) Biochem. J. 154, 529--539]. In the cortex, nucleo-cytoplasmic RNA transport in rats aged up to 20 days was significantly higher than in older rats, with the maximal value being attained between 16 and 19 days post partum. In contrast, in the hypothalamus, nucleo-cytoplasmic transport of RNA was low during the neonatal period and comparable with that of the mature animal. However, there were two periods of increased transport at later stages of development, the first between 15 and 19 days post partum and the second between 25 and 29 days post partum. These prepubertal changes in the nucleo-cytoplasmic transport of RNA in the female hypothalamus during weeks 3 and 4 post partum are coincident with other reported changes occurring during sexual differentiation. Differences in the timing of the maturational changes of the two brain regions thus appear to be reflected in developmental changes in RNA transport.  相似文献   

4.
The giant puffs, the Balbiani rings (BR) 1 and 2 of Chironomus tentans polytene chromosomes synthesize large RNA molecules sedimenting at about 75S. An RNA fraction of approximately the same size is present in nuclear sap and cytoplasm. In situ hybridization of cytoplasmic 75S RNA and other electrophoretically defined cytoplasmic RNA fractions showed BR RNA to be confined to the 75S RNA, and absent in other high molecular-weight cytoplasmic RNA fractions, which indiates that BR RNA is transferred from the nucleus into the cytoplasm without an appreciable size reduction.  相似文献   

5.
6.
In the nucleus of HeLa cells late after infection with adenovirus type 2 mRNA-sequences which are processed via RNA splicing are attached to the nuclear matrix (Mariman et al., 1982). Although the mRNA, which codes for polypeptide IX, is not formed via splicing, about 70% of the non-polyadenylated pre-mRNA and the polyadenylated pIX mRNA are bound to the matrix structure, indicating that polyadenylation is performed while the RNA is associated with the matrix. Binding to the nuclear matrix seems to be a common property of all mRNA-sequences in the nucleus. At the late stage of infection most of the newly synthesized mRNAs which appear in the cytoplasm are viral specific (Beltz & Flint, 1979). Kinetic analysis of the newly synthesized poly(A)-containing mRNA on sucrose gradients reveals that 7-12 S messengers appear more rapidly in the cytoplasm than messengers larger than 13 S. More specifically, the nuclear exit time of the pIX-mRNA, which is the major 9 S adenoviral messenger late after infection, was determined to be about 4 min, while messengers transcribed from the late region 3 need more than 16 min to arrive in the cytoplasm. In the cytoplasm about 70% of the mRNA is bound to the cytoskeletal framework, while 30% remains as free mRNP. Analysis of the mRNA in both fractions reveals that L3-, E1B- and pIX-specific polyadenylated mRNA preferably exist as cytoskeleton-bound mRNA. However, significant differences occur in the partition of specific messengers over free and cytoskeletal RNA fractions.  相似文献   

7.
STUDIES ON THE ORIGIN OF RIBOSOMES IN AMOEBA PROTEUS   总被引:1,自引:1,他引:0       下载免费PDF全文
The origin of cytoplasmic RNA and ribosomes was studied in Amoeba proteus by transplantation of a radioactive nucleus into an unlabeled cell followed by examination of the cytoplasm of the recipient for the presence of label. When a RNA-labeled nucleus was used, label appeared in the ribosomes, ribosomal RNA, and soluble RNA. Since the kinetics of appearance of labeled RNA indicates that the nucleus was not injured during the transfer, and since the transferred nuclear pool of labeled acid-soluble RNA precursors is inadequate to account for the amount of cytoplasmic RNA label, it is concluded that cytoplasmic ribosomal RNA is derived from acid-insoluble nuclear RNA and is probably transported as an intact molecule. Likewise, cytoplasmic soluble RNA probably originated in the nucleus, although labeling by terminal exchange in the cytoplasm is also possible. The results were completely different when a protein-labeled nucleus was grafted into an unlabeled host. In this case, label was found only in soluble proteins in the host cell cytoplasm, and there were no (or very few) radioactive ribosomes. This suggests that the nuclear pool of ribosomal protein and ribosomal protein precursors is relatively small and perhaps nonexistent (and, furthermore, shows that there was no cytoplasmic ribosomal contamination of the transferred nucleus).  相似文献   

8.
The number of ribosomal RNA molecules which are transferred through an average nuclear pore complex per minute into the cytoplasm (nuclear pore flow rate, NPFR) during oocyte growth of Xenopus laevis is estimated. The NPFR calculations are based on determinations of the increase of cytoplasmic rRNA content during defined time intervals and of the total number of pore complexes in the respective oogenesis stages. In the mid-lampbrush stage (500–700 μm oocyte diameter) the NPFR is maximal with 2.62 rRNA molecules/pore/minute. Then it decreases to zero at the end of oogenesis. The nucleocytoplasmic RNA flow rates determined are compared with corresponding values of other cell types. The molecular weight of the rRNA precursor transcribed in the extrachromosomal nucleoli of Xenopus lampbrush stage oocytes is determined by acrylamide gel electrophoresis to be 2.5 × 106 daltons. From the temporal increase of cytoplasmic rRNA (3.8 μg per oocyte in 38 days) and the known number of simultaneously growing precursor molecules in the nucleus the chain growth rate of the 40 S precursor RNA is estimated to be 34 nucleotides per second.  相似文献   

9.
Kinetic studies on the labelling in vivo with [14C]orotate of rat liver nucleolar and nucleoplasmic pre-rRNA (precursor of rRNA) and rRNA, isolated from detergent-purified nuclei, were carried out. The mathematical methods used for the computer analysis of specific-radioactivity curves are described. Evaluation of the experimental data permitted the selection of the most probable models for the processing of pre-rRNA and the nucleo-cytoplasmic transfer of rRNA. It was shown that considerable flexibility exists in the sequence of endonuclease attacks at critical sites of 45 and 41 S pre-rRNA chains, resulting in the simultaneous occurrence of several processing pathways. However, the phosphodiester bonds involved in the formation of mature 28 and 18 S rRNA appear to be protected until the generation of their immediate pre-rRNA. The turnover rates and half-lives of all pre-rRNA and rRNA pools were determined. The turnover rate of 45 S pre-rRNA corresponds to the formation of 1100 ribosomes/min per nucleus. The model for the nucleolus-nucleoplasm-cytoplasm migration of rRNA includes a 'nucleoplasm' compartment in which the small ribosomal subparticle is in rapid equilibrium with the respective cytoplasmic pool. At equimolar amounts of nuclear 28 and 18 S rRNA this model explains the faster appearance of labelled small ribosomal subparticles in the cytoplasm simultaneous with a lower labelling of nuclear 18 S rRNA as compared with 28 S rRNA.  相似文献   

10.
Isolated cells from Xenopus laevis neurulae were labeled, and the RNAs extracted from their nuclear and soluble cytoplasmic fractions were analyzed on polyacrylamide gels. In the soluble cytoplasm, 4S RNA emerged very rapidly, and this was immediately followed by the emergence of poly(A)-containing RNA and 18S ribosomal RNA. In contrast, the emergence of 28S ribosomal RNA was delayed by about 2 hr. The size distribution of cytoplasmic poly(A)-containing RNA was much smaller as compared to that of nuclear poly(A)-containing RNA. These results indicate that the newly synthesized RNAs in Xenopus neurula cells are transported from the nucleus to the cytoplasm in a characteristic sequence.  相似文献   

11.
A 4-8-fold increase in the rate of hepatic nuclear RNA synthesis occurred within 11 h after a single injection of oestradiol-17 beta to male Xenopus to induce egg-yolk protein synthesis. 2. By using a gentle procedure for fractionating nuclei into their major structurally different components [J. R. Tata& B. Baker (1974) Exp. Cell Res. 83. 111-124], it was found that the hormone-induced increase in the total amount of newly made RNA was associated with a 2-10-fold increase in the poly(A) content of nuclear RNA. 3. When the poly (A) content of nuclear RNA was determined by hybridization to poly[3H](U) or specific binding to oligo(dT)-cellulose, most of the increase (10-fold) in poly (A) content of newly synthesized RNA was associated with the euchromatin fractions, whereas the increase was less marked in the other subnuclear fractions. 4. Resolution of nuclear RNA into poly (A)-poor and poly(A)-rich RNA species by chromatography on oligo(dT)-cellulose, followed by polyacrylamide-gel electrophoresis with sodium dodecyl sulphate or in the pressence of 99% formamide, revealed that the hormone caused a preferential enhancement of high-molecular-weight (25S-60S) poly (A)-rich HnRNA (heterogeneous nuclear RNA,) much of which was associated with euchromatin and not with the nuclear sap. 5. Induction of vitellogenin in male frogs was in particular characterized by the appearance of a high-molecular-weight polyadenylated component exhibiting a peak at 35-36S, i.e. a molecular weight of approx. 2.05x10(6)+/-0.15x10(6). Although there is no evidence as yet that such a polyadenylated high-molecular-weight nuclear RNA species contains sequences corresponding to vitellogenin mRNA, it is possible that a high proportion of the most stable form of the putative nuclear precursor to vitellogenin mRNA induced by oestrogen in male Xenopus liver may be only marginally bigger than the cytoplasmic mRNA, and may at any one time be predominantly associated with the euchromatin fraction.  相似文献   

12.
The production of cytoplasmic and nucleolar rRNA species was examined in HeLa cells infected with high multiplicities of adenovirus type 5. Both 28S and 18S rRNA newly synthesized in infected cells ceased to enter the cytoplasm as reported previously (N. Ledinko, Virology 49: 79-89, 1972; H. J. Raskas, D. C. Thomas, and M. Green, Virology 40: 893-902, 1970). However, the effects on 28S cytoplasmic rRNA were observed considerably earlier in the infectious cycle than those on 18S rRNA. The inhibition of cellular protein synthesis and of the appearance in the cytoplasm of labeled cellular mRNA sequences (G. A. Beltz and S. J. Flint, J. Mol. Biol. 131: 353-373, 1979) were also monitored in infected cultures. During the later periods of an infectious cycle, from 18 h after infection, nucleolar rRNA synthesis and processing and exit of 18S rRNA from the nucleus were inhibited, probably reflecting the failure of infected cells to synthesize normal quantities of ribosomal proteins. The earliest responses of cellular RNA metabolism to adenovirus infection were, however, the rapid and apparently coordinate reductions in the levels of newly synthesized 28S rRNA and cellular mRNA sequences entering the cytoplasm.  相似文献   

13.
Abstract— By using a combination of subcutaneous and intraventricular injections of [14C]uridine and [3H]methyl- l -methionine we have obtained maximum incorporation in about 40 min of both radioactive precursors into nuclear RNA from rat brain. In this nuclear fraction we found at least two different types of RNA that were rapidly labelled. One of them incorporated both [14C]uridine and [3H]methyl groups and seemed to correspond to species of rRNA and their precursors. The other RNA fraction was less methylated or non-methylated and exhibited sedimentation coefficients distributed along a continuous 8–30 % sucrose density gradient. At least part of the latter type of RNA very probably was mRNA, but much of it must conespond to a different RNA similar to that recently described in HeLa cells by P enman , V esco and P enman (1968).
We also found that labelled 185 and 285 rRNA components began leaving the nucleus for the cytoplasm within 24 to 33 min after the radioactive precursors had been injected, and, in the cytoplasmic fraction, the patterns of incorporation for [14C]uridine and [3H]-methyl groups were similar for the 18S and 28S rRNA components. We estimate that in this fraction of rat brain the 18S rRNA component was 1·4 times more methylated than the 28S component. We also detected a lower sedimentation coefficient for the non- or slightly methylated, species of soluble RNA found in the cytoplasmic fraction.  相似文献   

14.
The ribosomal RNA transport from a nucleus to a perinuclear cytoplasm and its following distribution in the cytoplasm of Acetabularia mediterranea cells were studied using transplantation of RNA-labeled rhizoid into unlabeled stalk. In addition rifamycin treatment was used for inhibition of cytoplasmic RNA synthesis. Acetabularia nuclei contain the stable RNA fractions similar to those present in some other eukaryotes. Nuclear 25S and 17S ribosomal RNA rapidly enter the rhizoid cytoplasm whereas the following trasfer of them to other regions of the cell is a very slow process. Within two days only an insignificant part of 25S and 17S ribosomal RNA is transferred from the rhizoid to the stalk and is distributed there over the base-apical gradient. No preferential transfer of the nuclear ribosomal RNA to the apical region was observed.  相似文献   

15.
16.
17.
In the prostate of adult Wistar rats the RNA/DNA quotient of the whole organ as well as the amount of RNA and DNA in the nucleus was measured at different times after castration. Furthermore the half-life time for the turnover of the RNA in the nucleus and the cytoplasm was determined for normal and castrated rats with the aid of pulse labelling using [5(-3)H]uridine. A mathematical model was developed to analyze the experimental results. This model enabled us to make differentiated statements on the heterogeneous nuclear RNA (hmRNA) and the remaining RNA in the nucleus. The evaluation of the experimental values gave the following results: 1. By deprivation of androgens the uptake of [3H]uridine into the prostate is lowered. 2. The amount of DNA in the morphologically intact nucleus remains constant at least up to the 12th day after castration. 3. 6 days after castration the amount of hmRNA decreases to 1/10 and that of cytoplasmic RNA to 1/4. 4. The half-life time for the decrease of the whole nuclear RNA is 3.7 d and that of the cytoplasmic RNA 1.7 d. 5. The half-life time for the turnover of hmRNA is 16 min and that of cytoplasmic RNA about 2 days. 6 days after castration the half-life times are unchanged. The experimental results suggest that the observed decrease of nuclear RNA following castration can mainly be attributed to a reduced synthesis of hnRNA, while the decrease of cytoplasmic RNA is first of all caused by an increase in RNA degradation.  相似文献   

18.
The rate of synthesis in Chinese hamster cells of 5' cap structures, m7 GpppNmp, in large (greater than 700 bases) heterogeneous nuclear ribonucleic acid (RNA) molecules is two to three times faster than the synthesis of 3'-terminal polyadenylic acid segments. As judged by presence of caps, newly synthesized polysomal messenger RNA, exclusive of messenger RNA the size of histone messenger RNA, is more than 90% in the polyadenylated category. It appears, therefore, that between half and two-thirds of the long capped heterogeneous nuclear RNA molecules do not contribute a capped polysomal derivative to the cytoplasm. There are capped, nonpolysomal, non-polyadenylated molecules with a rapid turnover rate that fractionate with the cytoplasm. These metabolically unstable molecules either could represent leakage into the cytoplasm during fractionation or could truly spend a brief time in the cytoplasm before decay.  相似文献   

19.
RIBOSOME SYNTHESIS IN TETRAHYMENA PYRIFORMIS   总被引:9,自引:5,他引:4       下载免费PDF全文
The cellular site of synthesis of ribosomal RNA in Tetrahymena pyriformis was studied by analyzing the purified nuclear and cytoplasmic RNA from cells pulse labeled with uridine-3H. The results of studies using zonal centrifugation in sucrose density gradients show that the ribosomal RNA is synthesized in the nucleus as a large precursor molecule sedimenting at 35S. The 35S molecule undergoes rapid transformation through two main nuclear intermediates, sedimenting at about 30S and 26S. The smaller ribosomal RNA (17S) appears first in the cytoplasm and it seems to be absent from the nucleus. The apparent delay in the appearance of the larger ribosomal RNA (26S) in the cytoplasm is due to the presence of a larger pool of its precursors in the nucleus as indicated by pulse-chase experiments. The newly synthesized ribosomal RNA's appear in the cytoplasm as discrete 60S and 45S ribonucleoprotein particles, before their incorporation into the polysomes.  相似文献   

20.
THE CYTOPLASMIC CONTROL OF NUCLEAR ACTIVITY IN ANIMAL DEVELOPMENT   总被引:20,自引:0,他引:20  
1.This article reviews the occurrence, mechanism, and functional significance of the cytoplasmic regulation of nuclear activity during cell differentiation and especially during early animal development. 2.Nuclei from brain, and from other kinds of adult cell normally inactive in DNA synthesis, are rapidly induced to commence DNA synthesis by components or properties of intact egg cytoplasm. The components of egg cytoplasm which induce DNA synthesis are not species-specific and they are likely to include DNA polymerase. It is known that DNA polymerase exists in egg cytoplasm before it becomes associated with nuclei in which it is effective. The induction of DNA synthesis in brain nuclei by living egg cytoplasm is always preceded by a pronounced nuclear swelling, a dispersion of chromosomes or chromatin, and the entry of cytoplasmic protein into the nucleus. 3.RNA synthesis can be experimentally induced or repressed by living cytoplasm. The cytoplasm of unfertilized and fertilized eggs appears to contain components which can reversibly and independently repress the synthesis of ribosomal RNA, transfer RNA, and heterogeneous RNA. RNA synthesis can be induced by introducing nuclei inactive in this respect into the cytoplasm of cells very active in RNA synthesis. The induction and repression of RNA synthesis is preceded by a marked swelling of the nucleus and the dispersion of its chromosome material. 4.The cytoplasmic control of chromosome condensation before division has been demonstrated by introducing sperm or adult brain nuclei into the cytoplasm of oocytes undergoing meiotic maturation. 5.The evidence that regional differences in the composition of eggs and other cells are associated with changes in nuclear and gene activity is reviewed in Section 111. While it is certain that these regional differences are of great importance in cell differentiation, evidence that they have a direct effect on nuclear activity has been obtained in a few instances only. In some species it has been shown that the cytoplasmic components related to germ-cell differentiation include RNA and, frequently, granules. 6.It is concluded that whenever nuclei are introduced experimentally into the cytoplasm of another cell, they very quickly assume, in nearly every respect, the nuclear activity characteristic of the host cell. In many instances, altered function has been demonstrated in nuclei which subsequently support normal development. The induced nuclear changes are therefore regarded as normal and it is believed that they are achieved through the same mechanism as that by which the host cell nucleus originally came to function in its characteristic way. Examples are cited to show that changes in gene activity very frequently arise immediately after mitosis. The changes induced experimentally in transplanted nuclei resemble in very many respects those undergone by nuclei which are naturally reconstituted after mitosis, and it is argued that the two processes are functionally equivalent, It is suggested that during telophase of mitosis, chromosomes are reprogrammed in respect of potential gene activity by association with cytoplasmic proteins. Inter-phase nuclei seem not to show changes of gene activity except when they undergo a pronounced enlargement after entering a new cytoplasmic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号