首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diverse approaches that include site-directed mutagenesis have indicated a catalytic role of Lys-329 of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. To determine whether Lys-329 is required for the initial enolization of ribulose bisphosphate or for some subsequent step in the overall reaction pathway, the competence of position 329 mutant proteins (devoid of carboxylase activity) in catalyzing exchange of solvent protons with the C-3 proton of substrate has now been examined. Irrespective of the amino acid substitution for Lys-329, the mutant protein retains 2-6% of the wild-type activity in the proton exchange reaction. The complete stability of ribulose bisphosphate during the enolization catalyzed by mutant protein suggests that the major effect of Lys-329 is to facilitate the addition of gaseous substrates (CO2 or O2) to the enediol intermediate. The exchange reaction requires Mg2+, is CO2-dependent, and is inhibited by the transition-state analogue 2-carboxyarabinitol 1,5-bisphosphate. A mutant protein in which Lys-191, the site for carbamylation by CO2 in an obligatory activation step, is replaced by a cysteinyl residue totally lacks proton exchange activity. Barely detectable exchange activity (approximately 0.2% of wild-type) is displayed by the Lys-166----Cys mutant protein, consistent with the previously implicated role of Lys-166 in the deprotonation of ribulose bisphosphate. Retention of exchange activity by the Glu-48----Gln mutant protein, which is slightly active in overall carboxylation, demonstrates that active site Glu-48, like Lys-329, exerts its major effect at some step subsequent to the initial enolization.  相似文献   

2.
Both activities of ribulose bisphosphate carboxylase/oxygenase are dependent on carbamylation by CO2 of a specific lysyl epsilon-amino group (Lys-191 of the enzyme from Rhodospirillum rubrum). To examine the stringency of the requirement for this lysyl side chain, Lys-191 was converted to an aminoethylcysteinyl residue (net replacement of a gamma-methylene group by a sulfur atom) by a combination of site-directed mutagenesis and subsequent chemical modification. The purified Cys-191 mutant was totally devoid of both carboxylase and oxygenase activities. However, this mutant protein exhibited tight-binding of the transition-state analogue, 2-carboxyarabinitol bisphosphate, a property heretofore ascribed solely to the carbamylated form of the carboxylase. Treatment of the mutant protein with ethylene imine restored catalytic activity to 4-7% of the wild-type level. The carboxylase:oxygenase activity ratio of the aminoethylated protein was unperturbed relative to that of wild-type enzyme.  相似文献   

3.
Affinity labeling and comparative sequence analyses have placed Lys-166 of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum at the active site. The unusual nucleophilicity and acidity of the epsilon-amino group of Lys 166 (pKa = 7.9) suggest its involvement in catalysis, perhaps as the base that enolizes ribulosebisphosphate (Hartman, F.C., Milanez, S., and Lee, E.H. (1985) J. Biol. Chem. 260, 13968-13975). In attempts to clarify the role of Lys-166 of the carboxylase, we have used site-directed mutagenesis to replace this lysyl residue with glycine, alanine, serine, glutamine, arginine, cysteine, or histidine. All seven of these mutant proteins, purified by immunoaffinity chromatography, are severely deficient in carboxylase activity; the serine mutant, which is the most active, has a kcat only 0.2% that of the wild-type enzyme. Although low, the carboxylase activity displayed by some of the mutant proteins proves that Lys-166 is not required for substrate binding and argues that the detrimental effects brought about by amino acid substitutions at position 166 do not reflect gross conformational changes. As demonstrated by their ability to tightly bind a transition-state analogue (2-carboxyarabinitol 1,5-bisphosphate) in the presence of CO2 and Mg2+, some of the mutant proteins undergo the carbamylation reaction that is required for activation of the wild-type enzyme. Since Lys-166 is required neither for activation (i.e. carbamylation by CO2) nor for substrate binding, it must be essential to catalysis. When viewed within the context of previous related studies, the results of site-directed mutagenesis are entirely consistent with Lys-166 functioning as the base that initiates catalysis by abstracting the C-3 proton from ribulosebisphosphate. An alternative possibility that Lys-166 acts to stabilize a transition state in the reaction pathway cannot be rigorously excluded.  相似文献   

4.
Substitutions for active-site lysyl residues at positions 166 and 329 in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been shown to abolish catalytic activity. Treatment of the Cys-166 and Cys-329 mutant proteins with 2-bromoethylamine partially restores enzyme activity, presumably as a consequence of selective aminoethylation of the thiol group unique to each protein. Amino acid analyses, slow inactivation of the wild-type carboxylase by bromoethylamine, and the failure of bromoethylamine to restore activity to the corresponding glycyl mutant proteins support this interpretation. The observed facile, selective aminoethylations may reflect an active site microenvironment not dissimilar to that of the native enzyme. Catalytic constants of these novel carboxylases, which contain a sulfur atom in place of a specific lysyl gamma-methylene group, are significantly lower than that of the wild-type enzyme. Furthermore, the aminoethylated mutant proteins form isolable complexes with a transition state analogue, but with compromised stabilities. These detrimental effects by such a modest structural change underscore the stringent requirement for lysyl side chains at positions 166 and 329. In contrast, the aminoethylated mutant proteins exhibit carboxylase/oxygenase activity ratios and Km values that are unperturbed relative to those for the native enzyme.  相似文献   

5.
Both Lys-166 and His-291 of ribulosebisphosphate carboxylase/oxygenase fromRhodospirillum rubrum have been implicated as the active-site residue that initiates catalysis. To decide between these two candidates, we resorted to site-directed mutagenesis to replace Lys-166 and His-291 with several amino acids. All 7 of the position-166 mutants tested are severely deficient in carboxylase activity, whereas the alanine and serine mutants at position 291 are ∼40% and ∼18% as active as the native carboxylase, essentially ruling out His-291 in theRhodospirillum rubrum carboxylase (and by inference His-298 in the spinach enzyme) as a catalytically essential residue. The ability of some of the mutant proteins to undergo carbamate formation or to bind either ribulosebisphosphate or a transition-state analogue remains largely unimpaired. This implies that Lys-166 is not required for substrate binding; rather, the results corroborate the earlier postulate that Lys-166 functions as an acid-base group in catalysis or in stabilizing a transition state in the reaction pathway.  相似文献   

6.
The epsilon-amino group of Lys-166 of Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase was postulated as the essential base which initiates catalysis by abstracting the proton at C-3 of ribulose 1,5-bisphosphate (Hartman, F. C., Soper, T. S., Niyogi, S. K., Mural, R. J., Foote, R. S., Mitra, S., Lee, E. H., Machanoff, R., and Larimer, F. W. (1987) J. Biol. Chem. 262, 3496-3501). To scrutinize this possibility, the site-directed Gly-166 mutant, totally devoid of ribulosebisphosphate carboxylase activity, was examined for its ability to catalyze each of three partial reactions. When carbamylated at Lys-191 (i.e. activated with CO2 and Mg2+), wild-type enzyme catalyzed the hydrolysis of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate, the six-carbon reaction intermediate of the carboxylase reaction (Pierce, J., Andrews, T. J., and Lorimer, G. H. (1986a) J. Biol. Chem. 261, 10248-10256). Likewise, when carbamylated at Lys-191, the Gly-166 mutant also catalyzed the hydrolysis of this reaction intermediate. The carbamylated wild type catalyzed the enolization of ribulose 1,5-bisphosphate as indicated by the transfer of 3H radioactivity from [3-3H]ribulose, 1,5-bisphosphate to the medium. However, even when carbamylated at Lys-191, the mutant protein did not catalyze the enolization of ribulose 1,5-bisphosphate. Additionally, unlike the decarbamylated wild-type enzyme, which catalyzed the decarboxylation of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate in the absence of Mg2+, the mutant protein was inactive in this partial reaction. These properties exclude the epsilon-amino group of Lys-166 as an obligatory participant in the hydrolysis of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate. In contrast, these properties are consistent with the epsilon-amino group of Lys-166 functioning as an acid-base catalyst in the enolization of ribulose 1,5-bisphosphate (when the enzyme is carbamylated) and in the decarboxylation of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate (when the enzyme is decarbamylated). Alternatively, Lys-166 may stabilize the transition states of these two partial reactions.  相似文献   

7.
B A Read  F R Tabita 《Biochemistry》1992,31(2):519-525
Four unique amino acid substitutions were introduced by site-directed mutagenesis into the third conserved region of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) from Anacystis nidulans (Synechococcus sp., PCC6301), resulting in the formation of four mutant enzymes, I87V, R88K, G91V, and F92L. Wild-type and mutant proteins were purified after synthesis in Escherichia coli. These single amino acid substitutions do not appear to perturb intersubunit interactions or induce any gross conformational changes; purified mutant proteins are stable, for the most part like the wild-type holoenzyme, and exhibit nearly identical CD spectra. Three of the four mutants, however, are severely deficient in carboxylase activity, with kcat less than or equal to 35% of the wild-type enzyme. While the substrate specificity factors were the same for the mutant and wild-type enzymes, significant alterations in some kinetic parameters were observed, particularly in the Michaelis constants for CO2, O2, and RuBP. All four mutant proteins exhibited lower KCO2 values, ranging from 37 to 88% of the wild-type enzyme. Two of the mutants, in addition, exhibited significantly lower KRuBP values, and one mutant showed a substantial decrease in KO2. The effects of the single-site mutations in rbcS of this study strengthen the hypothesis that small subunits may not contribute directly to substrate specificity; however, individual residues of the small subunit substantially influence catalysis by large subunits.  相似文献   

8.
T Katsube  Y Kazuta  K Tanizawa  T Fukui 《Biochemistry》1991,30(35):8546-8551
The entire structural gene for potato tuber UDP-glucose pyrophosphorylase has been amplified from its cDNA by the polymerase chain reaction and inserted into the expression plasmid pTV118-N downstream from the lac promoter. Escherichia coli JM105 cells carrying thus constructed plasmid produced the enzyme to a level of about 5% of the total soluble protein upon induction with isopropyl beta-D-thiogalactopyranoside. The recombinant enzyme purified to homogeneity in two column chromatographic steps was structurally and catalytically identical with the enzyme purified from potato tuber except for the absence of an N-terminal-blocking acetyl group. To examine functional roles of the five lysyl residues that had been identified by affinity labeling studies to be located at or near the active site of the enzyme [Kazuta, Y., Omura, Y., Tagaya, M., Nakano, K., & Fukui, T. (1991) Biochemistry (preceding paper in this issue)], they were replaced individually by glutamine via site-directed mutagenesis. The Lys-367----Gln mutant enzyme was almost completely inactive, and the Lys-263----Gln mutant enzyme had significantly decreased Vmax values with perturbed Km values for pyrophosphate and alpha-D-glucose 1-phosphate. Lys-329----Gln also exhibited increased Km values for these substrates but exhibited Vmax values similar to those of the wild-type enzyme. The two mutant enzymes Lys-409----Gln and Lys-410----Gln showed catalytic properties almost identical with those of the wild-type enzyme. Thus, among the five lysyl residues, Lys-367 is essential for catalytic activity of the enzyme and Lys-263 and Lys-329 may participate in binding of pyrophosphate and/or alpha-D-glucose 1-phosphate.  相似文献   

9.
The active site of ribulose-bisphosphate carboxylase/oxygenase is constituted from domains of adjacent subunits and includes an intersubunit electrostatic interaction between Lys 168 and Glu48, which has been recently identified by x-ray crystallography (Andersson, I., Knight, S., Schneider, G., Lindqvist, Y., Lundqvist, T., Br?ndén, C.-I., and Lorimer, G.H. (1989) Nature 337, 229-234; Lundqvist, T., and Schneider, G. (1989) J. Biol. Chem. 264, 7078-7083). To examine the structural and functional requirements for this interaction, we have used site-directed mutagenesis to replace Lys168 of the homodimeric enzyme from Rhodospirillum rubrum with arginine, glutamine, or glutamic acid. All three substitutions result in mutant enzymes with less than or equal to 0.1% of wild-type activity. The nonconservative substitution of Lys168 with a glutamyl residue precludes the formation of a stable dimer, explaining the consequential abolition of enzymic activity. Both the Arg168 and Gln168 mutant proteins are isolated as stable dimers, even though the latter obviously lacks an electrostatic interaction present in the wild-type enzyme. Despite the absence of overall carboxylase activity, these two mutant proteins serve as catalysts for the enolization of ribulose bisphosphate, as measured by exchange of the C3 proton with solvent. These observations, as well as ligand-binding properties of the mutant proteins, are consistent with Lys168 facilitating a catalytic step subsequent to enolization.  相似文献   

10.
T Yoshimura  M B Bhatia  J M Manning  D Ringe  K Soda 《Biochemistry》1992,31(47):11748-11754
In bacterial D-amino acid transaminase (EC 2.6.1.21) replacement of Lys-145, which is covalently linked to the coenzyme pyridoxal 5'-phosphate in the wild-type enzyme, by an Asn residue gave a mutant enzyme (K145N) that slowly performed each half-reaction, as determined by spectral measurements. With the wild-type enzyme, the kinetics of these events were so rapid that pre-steady-state conditions were needed for their determination. The internal aldimine between coenzyme and Lys-145 was rapidly reduced with NaCNBH3 in the wild-type enzyme, whereas in the mutant enzyme the coenzyme, which is not covalently linked to the protein, was more resistant to reduction; the reduced forms of both wild-type and mutant enzymes were inactive. With large amounts of the K145N mutant enzyme and either amino acid or keto acid substrate alone, the formation of some reaction intermediates, i.e., the external aldimine with D-alanine and the ketimine with alpha-ketoglutarate, can be measured by conventional spectroscopy. Suicide substrates also induced slow spectral shifts of the E-PLP form of the enzyme. For the K145N enzyme, exogenous amines affected only the rate of the transaldimination but not the removal of the alpha-proton of the substrate. These results suggest that in the mutant enzyme some amino acid side chain other than Lys-145 performs this function. In order to identify this site, the K145N mutant enzyme was completely inactivated by the radiolabeled suicide substrate D-serine. Peptide mapping of tryptic digests showed that Lys-267 was the modified site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Oligonucleotide-directed mutagenesis of cloned Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase with a synthetic 13mer oligonucleotide primer was used to effect a change at Met-330 to Leu-330. The resultant enzyme was kinetically examined in some detail and the following changes were found. The Km(CO2) increased from 0.16 to 2.35 mM, the Km(ribulose bisphosphate) increased from 0.05 to 1.40 mM for the carboxylase reaction and by a similar amount for the oxygenase reaction. The Ki(O2) increased from 0.17 to 6.00 mM, but the ratio of carboxylase activity to oxygenase activity was scarcely affected by the change in amino acid. The binding of the transition state analogue 2-carboxyribitol 1,5-bisphosphate was reversible in the mutant and essentially irreversible in the wild type enzyme. Inhibition by fructose bisphosphate, competitive with ribulose bisphosphate, was slightly increased in the mutant enzyme. These data suggest that the change of the residue from methionine to leucine decreases the stability of the enediol reaction intermediate.  相似文献   

12.
Limited tryptic proteolysis of spinach (Spinacia oleracea) ribulose bisphosphate carboxylase/oxygenase (ribulose-P2 carboxylase) resulted in the ordered release of two adjacent N-terminal peptides from the large subunit, and an irreversible, partial inactivation of catalysis. The two peptides were identified as the N-terminal tryptic peptide (acetylated Pro-3 to Lys-8) and the penultimate tryptic peptide (Ala-9 to Lys-14). Kinetic comparison of hydrolysis at Lys-8 and Lys-14, enzyme inactivation, and changes in the molecular weight of the large subunit, indicated that proteolysis at Lys-14 correlated with inactivation, while proteolysis at Lys-8 occurred much more rapidly. Thus, enzyme inactivation is primarily the result of proteolysis at Lys-14. Proteolysis of ribulose-P2 carboxylase under catalytic conditions (in the presence of CO2, Mg2+, and ribulose-P2) also resulted in ordered release of these tryptic peptides; however, the rate of proteolysis at lysyl residues 8 and 14 was reduced to approximately one-third of the rate of proteolysis of these lysyl residues under noncatalytic conditions (in the presence of CO2 and Mg2+ only). The protection of these lysyl residues from proteolysis under catalytic conditions could reflect conformational changes in the N-terminal domain of the large subunit which occur during the catalytic cycle.  相似文献   

13.
Lysine 356 has been implicated by protein modification studies as a fructose-2,6-bisphosphate binding site residue in the 6-phosphofructo-2-kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Kitajima, S., Thomas, H., and Uyeda, K. (1985) J. Biol. Chem. 260, 13995-14002). However, Lys-356 is found in the fructose-2,6-bisphosphatase domain (Bazan, F., Fletterick, R., and Pilkis, S. J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). In order to ascertain whether Lys-356 is involved in fructose-2,6-bisphosphatase catalysis and/or domain/domain interactions of the bifunctional enzyme, Lys-356 was mutated to Ala, expressed in Escherichia coli, and then purified to homogeneity. Circular dichroism experiments indicated that the secondary structure of the Lys-356-Ala mutant was not significantly different from that of the wild-type enzyme. The Km for fructose 2,6-bisphosphate and the Ki for the noncompetitive inhibitor, fructose 6-phosphate, for the fructose-2,6-bisphosphatase of the Lys-356-Ala mutant were 2700- and 2200-fold higher, respectively, than those of the wild-type enzyme. However, the maximal velocity and the Ki for the competitive product inhibitor, inorganic phosphate, were unchanged compared to the corresponding values of the wild-type enzyme. Furthermore, in contrast to the wild-type enzyme, which exhibits substrate inhibition, there was no inhibition by substrate of the Lys-356-Ala mutant. In the presence of saturating substrate, inorganic phosphate, which acts by relieving fructose-6-phosphate and substrate inhibition, is an activator of the bisphosphatase. The Ka for inorganic phosphate of the Lys-356-Ala mutant was 1300-fold higher than that of the wild-type enzyme. The kinetic properties of the 6-phosphofructo-2-kinase of the Lys-356-Ala mutant were essentially identical with that of the wild-type enzyme. The results demonstrate that: 1) Lys-356 is a critical residue in fructose-2,6-bisphosphatase for binding the 6-phospho group of fructose 6-phosphate/fructose 2,6-bisphosphate; 2) the fructose 6-phosphate binding site is responsible for substrate inhibition; 3) Inorganic phosphate activates fructose-2,6-bisphosphatase by competing with fructose 6-phosphate for the same site; and 4) Lys-356 is not involved in 6-phosphofructo-2-kinase substrate/product binding or catalysis.  相似文献   

14.
Site-specific mutagenesis of a cloned gene for ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum was used to examine the functional significance of carbamate activation. Lysine 191, the residue involved in carbamate formation, was replaced with a glutamate in order to mimic the anionic nature of the carbamate. The resulting enzyme was capable of binding the six-carbon transition state analog carboxyarabinitol bisphosphate, but completely lacked catalytic activity. In contrast to the wild-type enzyme, carboxyarabinitol bisphosphate binding was not stabilized by divalent metal and CO2. These observations are consistent with a proposed role for the carbamate in binding the metal required for catalysis.  相似文献   

15.
The activation kinetics of purified Rhodospirillum rubrum ribulose bisphosphate carboxylase were analysed. The equilibrium constant for activation by CO(2) was 600 micron and that for activation by Mg2+ was 90 micron, and the second-order activation constant for the reaction of CO(2) with inactive enzyme (k+1) was 0.25 X 10(-3)min-1 . micron-1. The latter value was considerably lower than the k+1 for higher-plant enzyme (7 X 10(-3)-10 X 10(-3)min-1 . micron-1). 6-Phosphogluconate had little effect on the active enzyme, and increased the extent of activation of inactive enzyme. Ribulose bisphosphate also increased the extent of activation and did not inhibit the rate of activation. This effect might have been mediated through a reaction product, 2-phosphoglycolic acid, which also stimulated the extent of activation of the enzyme. The active enzyme had a Km (CO2) of 300 micron-CO2, a Km (ribulose bisphosphate) of 11--18 micron-ribulose bisphosphate and a Vmax. of up to 3 mumol/min per mg of protein. These data are discussed in relation to the proposed model for activation and catalysis of ribulose bisphosphate carboxylase.  相似文献   

16.
Further evidence for time-dependent interconversions between active and inactive states of ribulose 1,5-bisphosphate carboxylase is presented. It was found that ribulose bisphosphate oxygenase and ribulose bisphosphate carboxylase could be totally inactivated by excluding CO2 and Mg2+ during dialysis of the enzyme at 4 degrees C. When initially inactive enzyme was assayed, the rate of reaction continually increased with time, and the rate was inversely related to the ribulose bisphosphare concentration. The initial rate of fully activated enzyme showed normal Michaelis-Menten kinetics with respect to ribulose bisphosphate (Km = 10muM). Activation was shown to depend on both CO2 and Mg2+ concentrations, with equilibrium constants for activation of about 100muM and 1 mM respectively. In contrast with activation, catalysis appeared to be independent of Mg2+ concentration, but dependent on CO2 concentration, with a Km(CO2) of about 10muM. By studying activation and de-activation of ribulose bisphosphate carboxylase as a function of CO2 and Mg2+ concentrations, the values of the kinetic constants for these actions have been determined. We propose a model for activation and catalysis of ribulose bisphosphate carboxylase: (see book) where E represents free inactive enzyme; complex in parentheses, activated enzyme; R, ribulose bisphosphate; M, Mg2+; C, CO2; P, the product. We propose that ribulose bisphosphate can bind to both the active and inactive forms of the enzyme, and slow inter-conversion between the two states occurs.  相似文献   

17.
Analysis of the predicted amino acid sequence of Bacillus anthracis adenylyl cyclase revealed sequences with homology to consensus sequences for A- and B-type ATP binding domains found in many ATP binding proteins. Based on the analysis of nucleotide binding proteins, a conserved basic amino acid residue in the A-type consensus sequence and a conserved acidic amino acid residue in the B-type consensus sequence have been implicated in the binding of ATP. The putative ATP binding sequences in the B. anthracis adenylyl cyclase possess analogous lysine residues at positions 346 and 353 within two A-type consensus sequences and a glutamate residue at position 436 within a B-type consensus sequence. The two A-type consensus sequences overlap each other and have the opposite orientation. To determine whether Lys-346, Lys-353, or Glu-436 of the B. anthracis adenylyl cyclase are crucial for enzyme activity, Lys-346 and Lys-353 were replaced with methionine and Glu-436 with glutamine by oligonucleotide-directed mutagenesis. Furthermore, Lys-346 was also replaced with arginine. The genes encoding the wild type and mutant adenylyl cyclases were placed under the control of the lac promoter for expression in Escherichia coli, and extracts were assayed for adenylyl cyclase activity. In all cases, a 90-kDa polypeptide corresponding to the catalytic subunit of the enzyme was detected in E. coli extracts by rabbit polyclonal antibodies raised against the purified B. anthracis adenylyl cyclase. The proteins with the Lys-346 to methionine or arginine mutations exhibited no adenylyl cyclase activity, indicating that Lys-346 in the A-type ATP binding consensus sequence plays a critical role for enzyme catalysis. Furthermore, the enzyme with the Lys-353 to methionine mutation was also inactive, suggesting that Lys-353 may also directly contribute to enzyme catalysis. In contrast, the protein with the Glu-436 to glutamine mutation retained 75% of enzyme activity, suggesting that Glu-436 in the B-type ATP binding consensus sequence may not be directly involved in enzyme catalysis. It is concluded that Lys-346 and Lys-353 in B. anthracis adenylyl cyclase may interact directly with ATP and contribute to the binding of the nucleotide to the enzyme.  相似文献   

18.
Shen JB  Ogren WL 《Plant physiology》1992,99(3):1201-1207
Site-directed mutagenesis was performed on the 1.6 and 1.9 kilobase spinach (Spinacea oleracea) ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase cDNAs, encoding the 41 and 45 kilodalton (kD) isoforms of the enzyme, to create single amino acid changes in the putative ATP-binding site of Rubisco activase (Lys-107, Gln-109, and Ser-112) and in an unrelated cysteine residue (Cys-256). Replacement of Lys-107 with Met produced soluble protein with reduced Rubisco activase and ATPase activities in both isoforms. Substituting Ala or Arg for Lys-107 produced insoluble proteins. Rubisco activase activity increased in the 41-kD isoform when Gln-109 was changed to Glu, but activity in the 45-kD isoform was similar to the wild-type enzyme. ATPase activity in the Glu-109 mutations did not parallel the changes in Rubisco activase activity. Rather, a higher ratio of Rubisco activase to ATPase activity occurred in both isoforms. The mutation of Gln-109 to Lys inactivated Rubisco activase activity. Replacement of Ser-112 with Pro created an inactive protein, whereas attempts to replace Ser-112 with Thr were not successful. The mutation of Cys-256 to Ser in the 45-kD isoform reduced both Rubisco activase and ATPase activities. The results indicate that the two activities of Rubisco activase are not tightly coupled and that variations in photosynthetic efficiency may occur in vivo by replacing the wild-type enzyme with mutant enzymes.  相似文献   

19.
G J Lee  B A McFadden 《Biochemistry》1992,31(8):2304-2308
Site-directed mutagenesis was used to change Ser376 in the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase from the cyanobacterium Anacystis nidulans to Cys, Thr, or Ala. When expressed in Escherichia coli and purified, the mutant enzymes exhibited carboxylase activities that were reduced by 99% or more with respect to the activity of the wild-type enzyme. The Km values for ribulose bisphosphate at pH 8.0, 30 degrees C, were elevated from 46 microM for wild-type enzyme to 287, 978, and 81 microM for mutants in which Cys, Thr, or Ala, respectively, replaced Ser376. The Cys and Thr variants were almost devoid of oxygenase activity whereas the Ala variant had 16% as much oxygenase as wild-type enzyme, suggesting that this mutation had greatly elevated the oxygenase:carboxylase ratio.  相似文献   

20.
The functions of His291, His295 and His324 at the active-site of recombinant A. nidulans ribulose-1,5-bisphosphate carboxylase/ oxygenase have been explored by site-directed mutagenesis. Replacement of His291 by K or R resulted in unassembled proteins, while its replacement by E, Q or N resulted in assembled but inactive proteins. These results are in accord with a metal ion-binding role of this residue in the activated ternary complex by analogy to x-ray crystallographic analyses of tobacco and spinach enzymes.His324 (H327 in spinach), which is located within bonding distance of the 5-phosphate of bound bi-substrate analog 2-carboxyarabinitol 1,5-bisphosphate in the crystal structures, has been substituted by A, K, R, Q and N. Again with the exception of the H324K and R variants, these changes resulted in detectable assembled protein. The mutant H324A protein exhibited no detectable carboxylase activity, whereas the H324Q and H324N changes resulted in purifiable holoenzyme with 2.0 and 0.1% of the recombinant wild-type specific carboxylase activity, respectively. These results are consistent with a phosphate binding role for this residue.The replacement of His295, which has been suggested to aid in phosphate binding, with Ala in the A. nidulans enzyme leads to a mutant with 5.8% of the recombinant wild-type carboxylase activity. All other mutations at this position resulted in unassembled proteins. Purified H295A and H324Q enzymes had elevated Km(RuBP) values and unchanged CO2/O2 specificity factors compared to recombinant wild-type.Abbreviations CABP D-2-carboxyarabinitol 1,5 bisphosphate - IPTG isopropyl-b-d-thiogalactopyranoside - L large subunit of rubisco - PAGE polyacrylamide gel electrophoresis - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-P2, ribulose 1,5 bisphosphate - S small subunit of rubisco - SDS sodium dodecyl sulfate - X-gal 5-bromo-4-chloro-3-indolyl-b-d-galactoside  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号