首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we created a paclitaxel-sensitive strain of Saccharomyces cerevisiae by mutating five amino acid residues in beta-tubulin in a strain that has a decreased level of the ABC multidrug transporters. We have used site-directed mutagenesis to examine the relative importance of the five residues in determining sensitivity of this strain to paclitaxel. We found that the change at position 19 from K (brain beta-tubulin) to A (yeast beta-tubulin) and at position 227 from H (brain beta-tubulin) to N (yeast beta-tubulin) had no effect on the activity of paclitaxel. On the other hand, the changes V23T, D26G and F270Y, drastically reduced sensitivity of AD1-8-tax to paclitaxel. Molecular modeling and computational studies were used to explain the results.  相似文献   

2.
In vivo site-directed mutagenesis using oligonucleotides   总被引:13,自引:0,他引:13  
Functional characterization of the genes of higher eukaryotes has been aided by their expression in model organisms and by analyzing site-specific changes in homologous genes in model systems such as the yeast Saccharomyces cerevisiae. Modifying sequences in yeast or other organisms such that no heterologous material is retained requires in vitro mutagenesis together with subcloning. PCR-based procedures that do not involve cloning are inefficient or require multistep reactions that increase the risk of additional mutations. An alternative approach, demonstrated in yeast, relies on transformation with an oligonucleotide, but the method is restricted to the generation of mutants with a selectable phenotype. Oligonucleotides, when combined with gap repair, have also been used to modify plasmids in yeast; however, this approach is limited by restriction-site availability. We have developed a mutagenesis approach in yeast based on transformation by unpurified oligonucleotides that allows the rapid creation of site-specific DNA mutations in vivo. A two-step, cloning-free process, referred to as delitto perfetto, generates products having only the desired mutation, such as a single or multiple base change, an insertion, a small or a large deletion, or even random mutations. The system provides for multiple rounds of mutation in a window up to 200 base pairs. The process is RAD52 dependent, is not constrained by the distribution of naturally occurring restriction sites, and requires minimal DNA sequencing. Because yeast is commonly used for random and selective cloning of genomic DNA from higher eukaryotes such as yeast artificial chromosomes, the delitto perfetto strategy also provides an efficient way to create precise changes in mammalian or other DNA sequences.  相似文献   

3.
4.
Although chromosome condensation in the yeast Saccharomyces cerevisiae has been widely studied, visualization of this process in vivo has not been achieved. Using Lac operator sequences integrated at two loci on the right arm of chromosome IV and a Lac repressor-GFP fusion protein, we were able to visualize linear condensation of this chromosome arm during G2/M phase. As previously determined in fixed cells, condensation in yeast required the condensin complex. Not seen after fixation of cells, we found that topoisomerase II is required for linear condensation. Further analysis of perturbed mitoses unexpectedly revealed that condensation is a transient state that occurs before anaphase in budding yeast. Blocking anaphase progression by activation of the spindle assembly checkpoint caused a loss of condensation that was dependent on Mad2, followed by a delayed loss of cohesion between sister chromatids. Release of cells from spindle checkpoint arrest resulted in recondensation before anaphase onset. The loss of condensation in preanaphase-arrested cells was abrogated by overproduction of the aurora B kinase, Ipl1, whereas in ipl1-321 mutant cells condensation was prematurely lost in anaphase/telophase. In vivo analysis of chromosome condensation has therefore revealed unsuspected relationships between higher order chromatin structure and cell cycle control.  相似文献   

5.
6.
The pal 4 nuclease (termed I-Sce II) is encoded in the group I al 4 intron of the COX I gene of Saccharomyces cerevisiae. It introduces a specific double-strand break at the junction of the two exons A4-A5 and thus mediates the insertion of the intron into an intronless strain. To define the sequence recognized by pal 4 we introduced 35 single mutations in its target sequence and examined their cleavage properties either in vivo in E. coli (when different forms of the pal 4 proteins were artificially produced) or in vitro with mitochondrial extracts of a mutant yeast strain blocked in the splicing of the al 4 intron. We also detected the pal 4 DNA endonuclease activity in extracts of the wild type strain. The results suggest that 6 to 9 noncontiguous bases in the 17 base-pair region examined are necessary for pal 4 nuclease to bind and cleave its recognition site. We observed that the pal 4 nuclease specificity can be significantly different with the different forms of the protein thus explaining why only some forms are highly toxic in E. coli. This study shows that pal 4 recognition site is a complex phenomenon and this might have evolutionary implications on the transfer properties of the intron.  相似文献   

7.
Based on crystal structure analysis of the Serratia nuclease and a sequence alignment of six related nucleases, conserved amino acid residues that are located in proximity to the previously identified catalytic site residue His89 were selected for a mutagenesis study. Five out of 12 amino acid residues analyzed turned out to be of particular importance for the catalytic activity of the enzyme: Arg57, Arg87, His89, Asn119 and Glu127. Their replacement by alanine, for example, resulted in mutant proteins of very low activity, < 1% of the activity of the wild-type enzyme. Steady-state kinetic analysis of the mutant proteins demonstrates that some of these mutants are predominantly affected in their kcat, others in their Km. These results and the determination of the pH and metal ion dependence of selected mutant proteins were used for a tentative assignment for the function of these amino acid residues in the mechanism of phosphodiester bond cleavage by the Serratia nuclease.  相似文献   

8.
Site-directed mutagenesis and deletions were used to study mitochondrial import of a major yeast adenylate kinase, Aky2p. This enzyme lacks a cleavable presequence and occurs in active and apparently unprocessed form both in mitochondria and cytoplasm. Mutations were applied to regions known to be surface-exposed and to diverge between short and long isoforms. In vertebrates, short adenylate kinase isozymes occur exclusively in the cytoplasm, whereas long versions of the enzyme have mitochondrial locations. Mutations in the extra loop of the yeast (long-form) enzyme did not affect mitochondrial import of the protein, whereas variants altered in the central, N- or C-terminal parts frequently displayed increased or, in the case of a deletion of the 8 N-terminal triplets, decreased import efficiencies. Although the N-terminus is important for targeting adenylate kinase to mitochondria, other parameters like internal sequence determinants and folding velocity of the nascent protein may also play a role.  相似文献   

9.
The analysis of the antigenic surface of staphylococcal nuclease was begun by generating and characterizing a panel of mAb. Twelve mAb were selected from a large number of anti-nuclease mAb and characterized for affinity and isotype, by their ability to block enzyme activity, and by complementation and competitive inhibition assays for the relative location of epitopes. The mAb were placed in complementation groups based on their distinct binding patterns. These groups define a series of eight overlapping epitopes that are estimated to cover a large portion of the nuclease surface. Four mAb blocked the enzyme activity of nuclease. The epitopes defined by two of these four mAb were localized on the surface of nuclease using single amino acid variant Ag generated by site-directed mutagenesis of the cloned nuclease coding sequence. mAb-25 maps to residue 46 which is located at the edge of the enzyme active site consistent with its ability to inhibit enzyme activity. mAb-19, which also blocks enzyme activity and belongs to the same complementation group as mAb-25, was unaffected by the substitution at position 46. This suggests that mAb-19 and mAb-25, if they do react with the same epitope, have differences in fine specificity. mAb-22 blocks enzyme activity and belongs to an overlapping complementation group. The fourth mAb, mAb-1, which belongs to a distinct, nonoverlapping, complementation group, does not blocks enzyme activity, and is directed to a region of nuclease that includes the amino acid at position 133. This residue is located a short distance from the active site in a region that has been suggested to participate in binding of DNA, a substrate for nuclease. Therefore, the four epitopes defined by these mAb are localized at or near the enzyme active site.  相似文献   

10.
In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotidesKren, B.T. et al. (1998)Nat. Med. 4, 285–290Targeted nucleotide exchange in the alkaline phosphatase gene of HuH-7 cells mediated by a chimeric RNA/DNA oligonucleotideKren, B.T. et al. (1997)Hepatology 25, 1462–1468  相似文献   

11.
The principal transport protein for T4 in human blood, thyroxine-binding globulin (TBG), binds T4 with an exceptionally high affinity (Ka = 10(10) M(-1)). Its homology to the superfamily of the serpins has recently been used in the design of chimeric proteins, providing experimental evidence that an eight-stranded beta-barrel domain encompasses the ligand-binding site. We have now characterized the T4 binding site by site-directed mutagenesis. Sequence alignment of TBG from several species revealed a phylogenetically highly conserved stretch of amino acids comprising strands 2B and 3B of the beta-barrel motif. Mutations within this region (Val228Glu, Cys234Trp, Thr235Trp, Thr235Gln, Lys253Ala, and Lys253Asp), designed to impose steric hindrance or restriction of its mobility, had no significant influence on T4 binding. However, binding affinity was 20-fold reduced by introduction of an N-linked glycosylation site at the turn between strands 2B and 3B (Leu246Thr) without compromising the proper folding of this mutant as assessed by immunological methods. In most other serpins, this glycosylation site is highly conserved and has been shown to be crucial for cortisol binding of corticosteroid-binding globulin, the only other member of the serpins with a transport function. The ligand-binding site could thus be located to a highly aromatic environment deep within the beta-barrel. The importance of the binding site's aromatic character was investigated by exchanging phenylalanines with alanines. Indeed, these experiments revealed that substitution of Phe249 in the middle of strand 3B completely abolished T4 binding, while the substitution of several other phenylalanines had no effect.  相似文献   

12.
Human C-reactive protein (CRP) can activate the classical pathway of complement and function as an opsonin only when it is complexed to an appropriate ligand. Most known CRP ligands bind to the phosphocholine (PCh)-binding site of the protein. In the present study, we used oligonucleotide-directed site-specific mutagenesis to investigate structural determinants of the PCh-binding site of CRP. Eight mutant recombinant (r) CRP, Y40F; E42Q; Y40F, E42Q; K57Q; R58G; K57Q, R58G; W67K; and K57Q, R58G, W67K were constructed and expressed in COS cells. Wild-type and all mutant rCRP except for the W67K mutants bound to solid-phase PCh-substituted bovine serum albumin (PCh-BSA) with similar apparent avidities. However, W67K rCRP had decreased avidity for PCh-BSA and the triple mutant, K57Q, R58G, W67K, failed to bind PCh-BSA. Inhibition experiments using PCh and dAMP as inhibitors indicated that both Lys-57 and Arg-58 contribute to PCh binding. They also indicated that Trp-67 provides interactions with the choline group. The Y40F and E42Q mutants were found to have increased avidity for fibronectin compared to wild-type rCRP. We conclude that the residues Lys-57, Arg-58, and Trp-67 contribute to the structure of the PCh-binding site of human CRP. Residues Tyr-40 and Glu-42 do not appear to participate in the formation of the PCh-binding site of CRP, however, they may be located in the vicinity of the fibronectin-binding site of CRP.  相似文献   

13.
During respiratory glucose dissimilation, eukaryotes produce cytosolic NADH via glycolysis. This NADH has to be reoxidized outside the mitochondria, because the mitochondrial inner membrane is impermeable to NADH. In Saccharomyces cerevisiae, this may involve external NADH dehydrogenases (Nde1p or Nde2p) and/or a glycerol-3-phosphate shuttle consisting of soluble (Gpd1p or Gpd2p) and membrane-bound (Gut2p) glycerol-3-phosphate dehydrogenases. This study addresses the physiological relevance of these mechanisms and the possible involvement of alternative routes for mitochondrial oxidation of cytosolic NADH. Aerobic, glucose-limited chemostat cultures of a gut2Delta mutant exhibited fully respiratory growth at low specific growth rates. Alcoholic fermentation set in at the same specific growth rate as in wild-type cultures (0.3 h(-1)). Apparently, the glycerol-3-phosphate shuttle is not essential for respiratory glucose dissimilation. An nde1Delta nde2Delta mutant already produced glycerol at specific growth rates of 0.10 h(-1) and above, indicating a requirement for external NADH dehydrogenase to sustain fully respiratory growth. An nde1Delta nde2Delta gut2Delta mutant produced even larger amounts of glycerol at specific growth rates ranging from 0.05 to 0.15 h(-1). Apparently, even at a low glycolytic flux, alternative mechanisms could not fully replace the external NADH dehydrogenases and glycerol-3-phosphate shuttle. However, at low dilution rates, the nde1Delta nde2Delta gut2Delta mutant did not produce ethanol. Since glycerol production could not account for all glycolytic NADH, another NADH-oxidizing system has to be present. Two alternative mechanisms for reoxidizing cytosolic NADH are discussed: (i) cytosolic production of ethanol followed by its intramitochondrial oxidation and (ii) a redox shuttle linking cytosolic NADH oxidation to the internal NADH dehydrogenase.  相似文献   

14.
Rouhier N  Gelhaye E  Jacquot JP 《FEBS letters》2002,511(1-3):145-149
Six mutants (Y26A, C27S, Y29F, Y29P, C30S and Y26W/Y29P) have been engineered in order to explore the active site of poplar glutaredoxin (Grx) (Y26CPYC30). The cysteinic mutants indicate that Cys 27 is the primary nucleophile. Phe is a good substitute for Tyr 29, but the Y29P mutant was inactive. The Y26A mutation caused a moderate loss of activity. The YCPPC and WCPPC mutations did not improve the reactivity of Grx with the chloroplastic NADP-malate dehydrogenase, a well known target of thioredoxins (Trxs). The results are discussed in relation with the known biochemical properties of Grx and Trx.  相似文献   

15.
In this paper, we show that amino acids Glu(73) and Asp(77) of staphylococcal nuclease cooperate unequally with Glu(75) to stabilize its structure located between the C-terminal helix and beta-barrel of the protein. Amino acid substitutions E73G and D77G cause losses of the catalytic efficiency of 24 and 16% and cause thermal stability losses of 22 and 26%, respectively, in comparison with the wild type (WT) protein. However, these changes do not significantly change global and local secondary structures, based on measurements of fluorescence and CD(222 nm). Furthermore, x-ray diffraction analysis of the E75G protein shows that the overall structure of mutant and WT proteins is similar. However, this mutation does cause a loss of essential hydrogen bonding and charge interactions between Glu(75) and Lys(9), Tyr(93), and His(121). In experiments using double point mutations, E73G/D77G, E73G/E75G, and E75G/D77G, significant changes are seen in all mutants in comparison with WT protein as measured by fluorescence and CD spectroscopy. The losses of thermal stability are 47, 59, and 58%, for E73G/D77G, E73G/E75G, and E75G/D77G, respectively. The triple mutant, E73G/E75G/D77G, results in fluorescence intensity and CD(222 nm) close to those of the denatured state and in a thermal stability loss of 65% relative to the WT protein. Based on these results, we propose a model in which significant electrostatic interactions result in the formation of a locally stable structure in staphylococcal nuclease.  相似文献   

16.
Ethanol, in concentrations that affect growth and fermentation rates (3 to 10% [vol/vol]), activated in vivo the plasma membrane ATPase of Saccharomyces cerevisiae. The maximal value for this activated enzyme in cells grown with 6 to 8% (vol/vol) ethanol was three times higher than the basal level (in cells grown in the absence of ethanol). The Km values for ATP, the pH profiles, and the sensitivities to orthovanadate of the activated and the basal plasma membrane ATPases were virtually identical. A near-equivalent activation was also observed when cells grown in the absence of ethanol were incubated for 15 min in the growth medium with ethanol. The activated state was preserved after the extraction from the cells of the membrane fraction, and cycloheximide appeared to prevent this in vivo activation. After ethanol removal, the rapid in vivo reversion of ATPase activation was observed. While inducing the in vivo activation of plasma membrane ATPase, concentrations of ethanol equal to and greater than 3% (vol/vol) also inhibited this enzyme in vitro. The possible role of the in vivo activation of the plasma membrane proton-pumping ATPase in the development of ethanol tolerance by this fermenting yeast was discussed.  相似文献   

17.
Sodium azide (0.5--2.0 X 10(-5) M), applied for 24 h on cells growing in complete medium, increased up to 26 times the frequency of reversions and locus-specific suppressor mutations of allele ilv1-92 in diploid strain D7 of Saccharomyces cerevisiae. Similarly, it enhanced the frequency of reversions and/or mitotic gene conversions of alleles trp5-12/trp5-27 up to 19 times. Reconstruction experiments showed that the increase of mutations in complete medium was not due to a selection of prototrophic types under growth conditions and, therefore, that sodium azide acts as a weak mutagen in S. cerevisiae under growth conditions at a low pH. No mutagenic or convertogenic effect was observed when azide was applied to resting cells in buffer at pH 4.2.  相似文献   

18.
The goal of this work was to obtain rapid sampling technique to measure transient metabolites in vivo. First, a pulse of glucose was added to a culture of the yeast Saccharomyces cerevisiae growing aerobically under glucose limitation. Next, samples were removed at 2 to 5 s intervals and quenched using methods that depend on the metabolite measured. Extracellular glucose, excreted products, as well as glycolytic intermediates (G6P, F6P, FBP, GAP, 3-PG, PEP, Pyr) and cometabolites (ATP, ADP, AMP, NAD(+), NADH) were measured using enzymatic or HPLC methods. Significant differences between the adenine nucleotide concentrations in the cytoplasm and mitochondria indicated the importance of compartmentation for the regulation of the glycolysis. Changes in the intra- and extracellular levels of metabolites confirmed that glycolysis is regulated on a time scale of seconds. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 305-316, 1997.  相似文献   

19.
A mathematical model of glycolysis in Saccharomyces cerevisiae is presented. The model is based on rate equations for the individual reactions and aims to predict changes in the levels of intra- and extracellular metabolites after a glucose pulse, as described in part I of this study. Kinetic analysis focuses on a time scale of seconds, thereby neglecting biosynthesis of new enzymes. The model structure and experimental observations are related to the aerobic growth of the yeast. The model is based on material balance equations of the key metabolites in the extracellular environment, the cytoplasm and the mitochondria, and includes mechanistically based, experimentally matched rate equations for the individual enzymes. The model includes removal of metabolites from glycolysis and TCC for biosynthesis, and also compartmentation and translocation of adenine nucleotides. The model was verified by in vivo diagnosis of intracellular enzymes, which includes the decomposition of the network of reactions to reduce the number of parameters to be estimated simultaneously. Additionally, sensitivity analysis guarantees that only those parameters are estimated that contribute to systems trajectory with reasonable sensitivity. The model predictions and experimental observations agree reasonably well for most of the metabolites, except for pyruvate and adenine nucleotides. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 592-608, 1997.  相似文献   

20.
Ethanol, in concentrations that affect growth and fermentation rates (3 to 10% [vol/vol]), activated in vivo the plasma membrane ATPase of Saccharomyces cerevisiae. The maximal value for this activated enzyme in cells grown with 6 to 8% (vol/vol) ethanol was three times higher than the basal level (in cells grown in the absence of ethanol). The Km values for ATP, the pH profiles, and the sensitivities to orthovanadate of the activated and the basal plasma membrane ATPases were virtually identical. A near-equivalent activation was also observed when cells grown in the absence of ethanol were incubated for 15 min in the growth medium with ethanol. The activated state was preserved after the extraction from the cells of the membrane fraction, and cycloheximide appeared to prevent this in vivo activation. After ethanol removal, the rapid in vivo reversion of ATPase activation was observed. While inducing the in vivo activation of plasma membrane ATPase, concentrations of ethanol equal to and greater than 3% (vol/vol) also inhibited this enzyme in vitro. The possible role of the in vivo activation of the plasma membrane proton-pumping ATPase in the development of ethanol tolerance by this fermenting yeast was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号