首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kaempferol, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, was found to inhibit bovine aorta myosin light chain kinase with a Ki of 0.3-0.5 microM. It was found to be competitive with ATP and non-competitive with isolated myosin light chains. The specificity of this inhibitor was studied relative to protein kinase C and cAMP dependent protein kinase (IC50 = 15 microM and 150 microM, respectively). It appears not to interact strongly with calmodulin binding proteins, such as Ca2+-calmodulin dependent phosphodiesterase (IC50 = 45 microM), and had little effect on actin-activated myosin subfragment-1 ATPase activity (IC50 greater than 100 microM) or smooth muscle phosphatase activities (IC50 greater than 100 microM).  相似文献   

2.
We investigated the combined effect of 5-hydroxytryptamine (5-HT, serotonin) and calcium ionophore (A23187) on human platelet aggregation. Aggregation, monitored at 37 degrees C using a Dual-channel Lumi-aggregometer, was recorded for 5 min after challenge by a change in light transmission as a function of time. 5-HT (2-200 microM) alone did not cause platelet aggregation, but markedly potentiated A23187 (low dose) induced aggregation. Inhibitory concentration (IC50) values for a number of compounds were calculated as means +/- SEM from dose-response determinations. Synergism between 5-HT (2-5 microM) and A23187 (0.5-2 microM) was inhibited by 5-HT receptor blockers, methysergide (IC50 = 18 microM) and cyproheptadine (IC50 = 20 microM), and calcium channel blockers (verapamil and diltiazem, IC50 = 20 microM and 40 microM respectively). Interpretation of the effects of these blockers is complicated by their lack of specificity. Similarly, U73122, an inhibitor of phospholipase C (PLC), blocked the synergistic effect at an IC50 value of 9.2 microM. Wortmannin, a phosphatidylinositide 3-kinase (PI 3-K) inhibitor, also blocked the response (IC50 = 2.6 microM). However, neither genistein, a tyrosine-specific protein kinase inhibitor, nor chelerythrine, a protein kinase C inhibitor, affected aggregation at concentrations up to 10 microM. We conclude that the synergistic interaction between 5-HT and ionophore may be mediated by activation of PLC/Ca2+ and PI 3-kinase signalling pathways, but definitive proof will require other enzyme inhibitors with greater specificity.  相似文献   

3.
2,6-Dideoxy-7-O-(beta-D-glucopyranosyl) 2,6-imino-D-glycero-L-gulo- heptitol (7-O-beta-D-glucopyranosyl-alpha-homonojirimycin, 1) was isolated from the 50% methanol extract of the whole plant of Lobelia sessilifolia (Campanulaceae), which was found to potently inhibit rice alpha-glucosidase. Adenophorae radix, roots of Adenophora spp. (Campanulaceae), yielded new homonojirimycin derivatives, adenophorine (2), 1-deoxyadenophorine (3), 5-deoxyadenophorine (4), 1-C-(5-amino-5-deoxy-beta-D-galactopyranosyl)butane (beta-1-C-butyl-deoxygalactonojirimycin, 5), and the 1-O-beta-D-glucosides of 2 (6) and 4 (7), in addition to the recently discovered alpha-1-C-ethylfagomine (8) and the known 1-deoxymannojirimycin (9) and 2R,5R-bis(hydroxymethyl)-3R,4R- dihydroxypyrrolidine (DMDP, 10). Compound 4 is a potent inhibitor of coffee bean alpha-galactosidase (IC50 = 6.4 microM) and a reasonably good inhibitor of bovine liver beta-galactosidase (IC50 = 34 microM). Compound 5 is a very specific and potent inhibitor of coffee bean alpha-galactosidase (IC50 = 0.71 microM). The glucosides 1 and 7 were potent inhibitors of various alpha-glucosidases, with IC50 values ranging from 1 to 0.1 microM. Furthermore, 1 potently inhibited porcine kidney trehalase (IC50 = 0.013 microM) but failed to inhibit alpha-galactosidase, whereas 7 was a potent inhibitor of alpha-galactosidase (IC50 = 1.7 microM) without trehalase inhibitory activity.  相似文献   

4.
The Na+/H+ exchanger isoforms NHE1, NHE2, and NHE3 were all found to be expressed in Ehrlich ascites tumor cells, as evaluated by Western blotting and confocal microscopy. Under unstimulated conditions, NHE1 was found predominantly in the plasma membrane, NHE3 intracellularly, and NHE2 in both compartments. Osmotic cell shrinkage elicited a rapid intracellular alkalinization, the sensitivity of which to EIPA (IC50 0.19 microM) and HOE 642 (IC50 0.85 microM) indicated that it predominantly reflected activation of NHE1. NHE activation by osmotic shrinkage was inhibited by the protein kinase C inhibitors chelerythrine (IC50 12.5 microM), G? 6850 (5 microM), and G? 6976 (1 microM), and by the p38 MAPK inhibitor SB 203580 (10 microM). Furthermore, hypertonic cell shrinkage elicited a biphasic increase in p38 MAPK phosphorylation, with the first significant increase detectable 2 minutes after the hypertonic challenge. Neither myosin light chain kinase-specific concentrations of ML-7 (IC50 40 microM) nor ERK1/2 inhibition by PD 98059 (50 microM) had any effect on NHE activation. Under isotonic conditions, the serine/threonine protein phosphatase inhibitor calyculin A elicited an EIPA- and HOE 642-inhibitable intracellular alkalinization, indicating NHE1 activation. Similarly, shrinkage-induced NHE activation was potentiated by calyculin A. The calyculin A-induced alkalinization was not associated with an increase in the free, intracellular calcium concentration, but was abolished by chelerythrine. It is concluded that shrinkage-induced NHE activation is dependent on PKC and p38 MAPK, but not on MLCK or ERK1/2. NHE activity under both iso- and hypertonic conditions is increased by inhibition of serine/threonine phosphatases, and this effect appears to be PKC-dependent.  相似文献   

5.
Cyanidin-3-rutinoside, a natural anthocyanin, inhibited alpha-glucosidase from baker's yeast in dose-responsive manner. The IC50 value was 19.7 microM +/- 0.24 microM, compared with the IC50 value of voglibose (IC50 = 23.4 +/- 0.30 microM). Cyanidin-3-rutinoside was found to be a non-competitive inhibitor for yeast alpha-glucosidase with a Ki value in the range of 1.31-1.56 x 10(-5)M. These results indicated that cyanidin-3-rutinoside could be classed as a new alpha-glucosidase inhibitor.  相似文献   

6.
Some novel 1-methyl-4-(2-(2-substitutedphenyl-1H-benzimidazol-1-yl)acetyl)thiosemicarbazides (16a-20a), 5-[(2-(substitutedphenyl)-1H-benzimidazol-1-yl)methyl]-N-methyl-1,3,4-thiadiazol-2-amines (17b-20b), and 5-[(2-(substitutedphenyl)-1H-benzimidazol-1-yl)methyl-4-methyl-2H-1,2,4-triazole-3(4H)-thiones (16c-20c) were synthesized and tested for antioxidant properties by using various in vitro systems. Compounds 16a-20a were found to be a good scavenger of DPPH radical (IC(50), 26 microM; IC(50), 30 microM; IC(50), 43 microM; IC(50), 55 microM; IC(50), 74 microM, respectively) when compared to BHT (IC(50), 54 microM). Noteworthy results could not be found on superoxide radical. Compound 19b, which is the most active derivative inhibited slightly lipid peroxidation (28%) at 10(-3)M concentration. Compound 17c inhibited the microsomal ethoxyresorufin O-deethylase (EROD) activity with an IC(50)=4.5 x 10(-4)M which is similarly better than the specific inhibitor caffeine IC(50)=5.2 x 10(-4)M.  相似文献   

7.
Flavonoids: potent inhibitors of arachidonate 5-lipoxygenase   总被引:2,自引:0,他引:2  
Various flavonoids were found to be relatively selective inhibitors of arachidonate 5-lipoxygenase which initiates the biosynthesis of leukotrienes with the activity of slow reacting substance of anaphylaxis. Cirsiliol (3',4',5-trihydroxy-6,7-dimethoxyflavone) was most potent, and the enzyme partially purified from rat basophilic leukemia cells was inhibited by 97% at a concentration of 10 microM (IC50, about 0.1 microM). 12-Lipoxygenases from bovine platelets and porcine leukocytes were also inhibited but at higher concentrations (IC50, about 1 microM), and fatty acid cyclooxygenase purified from bovine vesicular gland was scarcely affected. The compound at 10 microM suppressed by 99% the immunological release of slow reacting substance of anaphylaxis from passively sensitized guinea pig lung (IC50, about 0.4 microM).  相似文献   

8.
The effect of 6,7,4'-trihydroxyisoflavan on human platelet 12-lipoxygenase and human and porcine PMNL 5-lipoxygenase activities has been studied. 6,7,4'-Trihydroxyisoflavan was found to inhibit 5-lipoxygenase more strongly than 12-lipoxygenase; its concentration for 50% inhibition (IC50) was 1.6 microM for human and porcine 5-lipoxygenase and 22 microM for human platelet 12-lipoxygenase. Inhibition of microsomal cyclooxygenase from ram seminal vesicles is exhibited at much higher concentrations of 6,7,4'-trihydroxyisoflavan (IC50 = 200 microM).  相似文献   

9.
A new heterocyclic family of (2-(dimethylamino)ethyl)-2-substituted phenylnaphtho[2,1-d]thiazole-5-carboxamides modified from naphthalimides was designed, synthesized, and quantitatively evaluated as antitumor agents and photonucleases. All these compounds were found to be more cytotoxic against P388 than against A549. B(3) (m-NO(2)) was found to be the strongest inhibitor for P388 with IC(50) of 1.49 microM, while B(2) was the most cytotoxic compound against A549 with IC(50) of 12 microM. B(4) (p-CH(3)), the most efficient DNA photocleaver, showed detectable DNA cleavage at 0.5 microM and total cleavage from form I to 100% form II at 50 microM. The photocleaving mechanism was changed with the modification to be via superoxide anion and radical.  相似文献   

10.
1,1-bis(4-Hydroxyphenyl)-2-phenylpent-1-ene (5) and 1,1,2-tris(4-hydroxyphenyl)pent-1-ene (6) derivatives with terminal CN (5a, 6a), NH(2) (5b, 6b), NHCOCH(3) (5c, 6c), NHCOC(2)H(5) (5d, 6d) groups at the C2-propyl chain were synthesized and assayed in vitro for estrogen receptor (ER) binding affinity (RBA) in a competition experiment with [3H]estradiol and for estrogenic and anti-estrogenic properties in a luciferase assay with ER-positive MCF-7-2a cells, stably transfected with the plasmid ERE(wtc)luc. The CN as well as the NH(2) group reduced the RBA-values (5: 2.09%; 5a: 1.50%; 5b: 0.07%; 6: 4.03%; 6a: 0.67%; 6b: 0.20%) and the antagonistic potency (5: IC(50)=0.05 microM; 5a: IC(50)=0.43 microM; 5b: IC(50)=1.50 microM; 6: IC(50)=0.07 microM; 6a: IC(50)=0.60 microM; 6b: IC(50)=2.00 microM). Derivatization of the amino function with acetic anhydride and propionic anhydride did not change the RBA-value but altered the antagonistic profile (5c: IC(50)=2.50 microM; 5d: IC(50)=not detectable; 6c: IC(50)=0.65 microM; 6d: IC(50)=1.00 microM). Agonistic effects were only detected for the amine 6b (34.2% activation of the luciferase expression). These data document that estrogen receptor binding and the antagonistic effects can be modified by terminal groups at the C2-propyl chain of the pure antagonists 5 and 6. The mode of action is unclear. However, it can be assumed that the elongation of the side chain causes a reorientation in the LBD in order to locate the side chain in a side pocket near the ligand binding domain.  相似文献   

11.
A compound was isolated and purified from heather flowers (Calluna vulgaris) based on its ability to inhibit lipoxygenase activity. This molecule was characterized as ursolic acid by GC-MS. Ursolic acid was found to be an inhibitor of both potato tuber 5-lipoxygenase and soybean 15-lipoxygenase with IC50 values of 0.3 mM. Ursolic acid also inhibits lipoxygenase activity in mouse peritoneal macrophages at 1 microM and HL60 leukemic cells growth (IC50 = 0.85 microM) as well as their DNA synthesis (IC50 = 1 microM). The possible role of lipoxygenase inhibition in the proliferation of leukemic cells is discussed.  相似文献   

12.
The synthesis and evaluation of 10-methanesulfonyl-DDACTHF (1), 10-methanesulfonyl-5-DACTHF (2), and 10-methylthio-DDACTHF (3) as potential inhibitors of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide ribonucleotide transformylase (AICAR Tfase) are reported. The compounds 10-methanesulfonyl-DDACTHF (1, K(i) = 0.23 microM), 10-methanesulfonyl-5-DACTHF (2, K(i) = 0.58 microM), and 10-methylthio-DDACTHF (3, K(i) = 0.25 microM) were found to be selective and potent inhibitors of recombinant human GAR Tfase. Of these, 3 exhibited exceptionally potent, purine sensitive growth inhibition activity (3, IC50 = 100 nM) against the CCRF-CEM cell line being 3-fold more potent than Lometrexol and 30-fold more potent than the parent, unsubstituted DDACTHF, whereas 1 and 2 exhibited more modest growth inhibition activity (1, IC50 = 1.0 microM and 2, IC50 = 2.0 microM).  相似文献   

13.
Antiviral activities of acyclovir (9-[(2-hydroxyethoxy) methyl] guanine, ACV), penciclovir (9-[4-hydroxy-3-(hydroxymethyl) butyl] guanine, PCV), ganciclovir ([9-(1,3-dihydroxy-2-propoxy) methyl] guanine, GCV), and foscarnet (phosphonoformic acid, PFA) were determined against Human Herpesvirus 6 (HHV-6) by flow cytometric technique. The technique is based on the detection of gp116 antigen expression in virus infected cells. Susceptibility was defined in terms of drug concentration which reduced the number of cells expressing HHV-6 gp116 antigen with a mean fluorescent intensity (MFI) by 50% as compared to virus infected untreated cells. GCV was found to be most effective against HHV-6 followed by PFA, PCV and ACV. For HHV-6A, the mean 50% inhibitory concentrations (IC50) of GCV and PFA were found to be 3.4 microM and 34.7 microM respectively, whereas the IC50 of ACV and PCV were found to be 53.7 microM and 37.9 microM respectively. For HHV-6B, the IC50 of GCV and PFA were found to be 5.7 microM and 71.4 microM respectively, whereas the IC50 of ACV and PCV were found to be 119.0 microM and 77.8 microM respectively. Flow cytometry is a valuable technique for the evaluation of antiviral compounds against viruses including HHV-6.  相似文献   

14.
A synthetic beta-lactone trans-DU-6622 (3-hydroxy-2-(hydroxymethyl)-5-[7-(methylcarbonyl)-naphthalen++ +-1-yl]pentanoic acid 1,3-lactone, a mixture of (2R, 3R)- and (2S, 3S)-beta-lactones) was found to inhibit HMG-CoA synthase (IC(50): 0. 15 microM) and pancreatic lipase (IC(50): 120 microM). The effects of the optically pure DU-6622 isomers on the two enzymes were compared. The (2R, 3R)-isomer was shown to be a highly specific inhibitor of HMG-CoA synthase (IC(50): 0.098 microM vs 270 microM for pancreatic lipase), while the (2S, 3S)-isomer markedly increased the specificity of lipase inhibition (IC(50): 27 microM vs 31 microM for HMG-CoA synthase). Furthermore, the (2R, 3R)-isomer strongly inhibited the binding of [(14)C]hymeglusin to HMG-CoA synthase, indicating that the isomer was bound to the same site of the synthase as hymeglusin. The (2R, 3R)-beta-lactone is responsible for the specific inhibition of HMG-CoA synthase, while the (2S, 3S)-beta-lactone is responsible for the inhibition of pancreatic lipase.  相似文献   

15.
Compounds 4a-j and 5 were synthesized by cyclocondensation of 3a-j and hydrazine and showed significant LDL-antioxidant activities in the TBARS assay, the lag time of conjugated diene production, the relative electrophoretic mobility (REM) of ox-LDL, the apoB-100 fragmentation, and the macrophage-mediated LDL oxidation. Among compounds 4a-j and 5, 4a was found to be the most active compound as an inhibitor of LDL oxidation and 4a (IC50 = 0.1 microM) was 6-fold more potent than probucol (IC50 = 0.6 microM) in the TBARS assay.  相似文献   

16.
Nitric oxide and platelet energy metabolism   总被引:3,自引:0,他引:3  
This study was undertaken to determine whether nitric oxide (NO) can affect platelet responses through the inhibition of energy production. It was found that NO donors: S-nitroso-N-acetylpenicyllamine, SNAP, (5-50 microM) and sodium nitroprusside, SNP, (5-100 microM) inhibited collagen- and ADP-induced aggregation of porcine platelets. The corresponding IC50 values for SNAP and SNP varied from 5 to 30 microM and from 9 to 75 microM, respectively. Collagen- and thrombin-induced platelet secretion was inhibited by SNAP (IC50 = 50 microM) and by SNP (IC50 = 100 microM). SNAP (20-100 microM), SNP (10-200 microM) and collagen (20 microg/ml) stimulated glycolysis in intact platelets. The degree of glycolysis stimulation exerted by NO donors was similar to that produced by respiratory chain inhibitors (cyanide and antimycin A) or uncouplers (2,4-dinitrophenol). Neither the NO donors nor the respiratory chain blockers affected glycolysis in platelet homogenate. SNAP (20-100 microM) and SNP (50-200 microM) inhibited oxygen consumption by platelets. The effect of SNP and SNAP on glycolysis and respiration was not reduced by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, a selective inhibitor of NO-stimulated guanylate cyclase. SNAP (5-100 microM) and SNP (10-300 microM) inhibited the activity of platelet cytochrome oxidase and had no effect on NADH:ubiquinone oxidoreductase and succinate dehydrogenase. Blocking of the mitochondrial energy production by antimycin A slightly affected collagen-evoked aggregation and strongly inhibited platelet secretion. The results indicate that: 1) in porcine platelets NO is able to diminish mitochondrial energy production through the inhibition of cytochrome oxidase, 2) the inhibitory effect of NO on platelet secretion (but not aggregation) can be attributed to the reduction of mitochondrial energy production.  相似文献   

17.
While commercial isatins were practically inactive against the target proteases, thiosemicarbazone derivatives were found to be active. The most active compound from the series displayed an inhibitory IC(50) value of 1 microM against rhodesain. One thiosemicarbazone was found to be active against all three proteases with inhibitory IC(50) values of 10 microM or less. A combination of N-benzylation and appropriate substitution on the aromatic portion of the isatin scaffold was generally found to be beneficial especially against cruzain for ketone inhibitors.  相似文献   

18.
n-Alkyl esters (ethyl, octyl, dodecyl, and cetyl) of gallic acid were evaluated as enzyme inhibitors of recombinant rat squalene epoxidase (SE), a rate-limiting enzyme of cholesterol biogenesis. Dodecyl (6) (IC(50) = 0.061 microM) showed the most potent inhibition, which was far more potent than those of previously reported naturally occurring gallocatechins. Octyl gallate (5) (IC(50) = 0.83 microM) and cetyl gallate (7) (IC(50) = 0.59 microM) also showed good inhibition, while gallic acid (IC(50) = 73 microM) itself was not so active. In addition, chemically synthesized galloyl ester of cholesterol (9) (IC(50) = 3.9 microM), farnesol derivative (10) (IC(50) = 0.57 microM), and dodecyl galloyl amide (8) (IC(50) = 3.0 microM) were also potent inhibitors of SE. Inhibition kinetics revealed that dodecyl gallate inhibited SE in competitive (K(I) = 0.033 microM) and no-time-dependent manner. The potent inhibition of the flavin monooxygenase would be caused by specific binding to the enzyme, and by scavenging reactive oxygen species required for the epoxidation reaction.  相似文献   

19.
The toxicity of sixteen fungal metabolites produced by some entomopathogenic fungi or biological control fungi agents was evaluated on lepidopteran Spodoptera frugiperda (SF-9) cell line by Trypan blue dye exclusion and MTT-colorimetric assay, after 48 h of incubation. No statistical difference was found between IC50values (50% Inhibiting Concentration) and CC50 values (50% Cytotoxicity Concentration) obtained by MTT test and Trypan blue dye exclusion for each fungal metabolite. By MTT assay, the cytotoxicity ranking was fusarenon X (IC50 0.3 microM) = diacetoxyscirpenol (IC50 0.5 microM) = beauvericin (IC50 2.5 microM) = nivalenol (IC50 5.3 microM) = enniatin (IC50 6.6 microM) > or = gliotoxin (IC50 7.5 microM) > zearalenone (IC50 17.5 microM) > deoxynivalenol (IC50 47.6 microM). By Trypan blue dye exclusion the cytotoxicity ranking was fusarenon X (CC50 0.4 microM) = diacetoxyscirpenol (CC50 1.1 microM) beauvericin = (CC50 3.0 microM)=gliotoxin (CC50 4.0 microM) = enniatin (CC50 6.7 microM) > or = nivalenol (CC50 9.5 microM) > zearalenone (CC50 18.3 microM) > deoxynivalenol (CC50 45.0 microM). The comparison with other bioassays showed that the SF-9 insect cell line could represent a further tool to screen for the toxic effects of fungal metabolites especially for beauvericin, gliotoxin, and zearalenone.  相似文献   

20.
Opioid binding site in EL-4 thymoma cell line   总被引:1,自引:0,他引:1  
E Fiorica  S Spector 《Life sciences》1988,42(2):199-206
Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of [3H] bremazocine indicated a single site with a KD = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10(6) cells (51 pmols/mg total cell proteins). To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of [3H] bremazocine with an IC50 value = 0.57 microM. The two stereoisomers levorphanol and dextrorphan showed the same affinity for this site (IC50 = 2.9 microM and 1.9 microM respectively). While morphine, [D-Pen2, D-Pen5] enkephalin and beta-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC50 = 60 microM, that was similar to naloxone (IC50 = 69 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号