首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of studies have investigated the effects of fish oil on the production of pro-inflammatory cytokines using peripheral blood mononuclear cell models. The majority of these studies have employed heterogeneous blends of long-chain n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which preclude examination of the individual effects of LC n-3 PUFA. This study investigated the differential effects of pure EPA and DHA on cytokine expression and nuclear factor kappaB (NF-kappaB) activation in human THP-1 monocyte-derived macrophages. Pretreatment with 100 microM EPA and DHA significantly decreased lipopolysaccharide (LPS)-stimulated THP-1 macrophage tumor necrosis factor (TNF) alpha, interleukin (IL) 1beta and IL-6 production (P<.02), compared to control cells. Both EPA and DHA reduced TNF-alpha, IL-1beta and IL-6 mRNA expression. In all cases, the effect of DHA was significantly more potent than that of EPA (P<.01). Furthermore, a low dose (25 microM) of DHA had a greater inhibitory effect than that of EPA on macrophage IL-1beta (P<.01 and P<.04, respectively) and IL-6 (P<.003 and P<.003, respectively) production following 0.01 and 0.1 microg/ml LPS stimulation. Both EPA and DHA down-regulated LPS-induced NF-kappaB/DNA binding in THP-1 macrophages by approximately 13% (P< or =.03). DHA significantly decreased macrophage nuclear p65 expression (P< or =.05) and increased cytoplasmic IkappaBalpha expression (P< or =.05). Although similar trends were observed with EPA, they were not significant. Our findings suggest that DHA may be more effective than EPA in alleviating LPS-induced pro-inflammatory cytokine production in macrophages - an effect that may be partly mediated by NF-kappaB. Further work is required to elucidate additional divergent mechanisms to account for apparent differences between EPA and DHA.  相似文献   

2.
Fürstova V  Kopska T  James RF  Kovar J 《Life sciences》2008,82(13-14):684-691
We tested the effects of various types of fatty acids, differing in the degree of saturation and in the cis/trans configuration of the double bond, on the growth and viability of NES2Y cells (a human pancreatic beta-cell line). We found that during a 48-hour incubation period, saturated fatty acids, i.e. palmitic and stearic acids, at a physiologically relevant concentration of 1 mM and higher concentrations induced death of the beta-cells while their counterpart unsaturated fatty acids, i.e. palmitoleic and oleic acids, did not induce cell death at concentrations up to 3 mM. We also found that unsaturated elaidic acid with a trans double bond exerted significant inhibition of growth of the beta-cells at a concentration approximately ten times lower, i.e. 0.1 mM vs. 1 mM, than counterpart oleic acid with a cis double bond. This is the first direct evidence that a trans unsaturated fatty acid is significantly more effective in inhibiting beta-cell growth than a counterpart cis unsaturated fatty acid. Furthermore, we newly demonstrated that beta-cell death induced by saturated fatty acids is related to significant increase of caspase-2 activity (2 to 5-fold increase) but not to caspase-3 activation. The growth-inhibiting effect of saturated fatty acids at concentrations lower than death-inducing concentrations correlates with certain increase of caspase-2 activity.  相似文献   

3.
Li LX  Yoshikawa H  Egeberg KW  Grill V 《Cytokine》2003,23(4-5):101-107
Regulation of uncoupling protein-2 (UCP-2) in beta-cells is presently unclear but may involve oxidative stress. We tested for regulation by beta-cell toxic cytokines. Exposure to interleukin-1beta (IL-1beta, 10 ng/ml) for 6 h down-regulated UCP-2 mRNA in clonal INS-1 cells, by 37 +/- 7%, and in rat pancreatic islets, by 55 +/- 8%. In contrast, a 6 h exposure to IL-1beta did not affect viability as assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, or mitochondrial membrane potential, or ATP cellular contents. Continued exposure to IL-1beta was accompanied by decreased viability and persisting down-regulation of UCP-2 mRNA. Exposure to a combination of IL-1beta and tumor necrosis factor (TNF)-alpha for 48 h additively decreased cell viability and UCP-2 mRNA. The constitutive nitric oxide (NO) synthase inhibitor N-omega-nitro-L-arginine methyl ester (L-NAME, 1 mM) partially protected against toxicity but failed to significantly affect UCP-2 mRNA expression. The inducible NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA, 1 mM) protected completely against cytokine-induced toxicity. L-NMMA per se down-regulated UCP-2 mRNA (by 64 +/- 7%). Transfection with a UCP-2-antisense nucleotide failed to affect IL-1beta induced toxicity. In conclusion, down-regulation of UCP-2 mRNA by IL-1beta is an early event of cytokine interaction with beta-cells which is not directly coupled to toxicity.  相似文献   

4.
Typically fatty acids (FA) exert differential immunomodulatory effects with n-3 [α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] and n-6 [linoleic acid (LA) and arachidonic acid (AA)] exerting anti- and pro-inflammatory effects, respectively. This over-simplified interpretation is confounded by a failure to account for conversion of the parent FA (LA and ALA) to longer-chain bioactive products (AA and EPA/DHA, respectively), thereby precluding discernment of the immunomodulatory potential of specific FA. Therefore, we utilized the Δ6-desaturase model, wherein knockout mice (D6KO) lack the Fads2 gene encoding for the rate-limiting enzyme that initiates FA metabolism, thereby providing a model to determine specific FA immunomodulatory effects. Wild-type (WT) and D6KO mice were fed one of four isocaloric diets differing in FA source (9 weeks): corn oil (LA-enriched), arachidonic acid single cell oil (AA-enriched), flaxseed oil (ALA-enriched) or menhaden fish oil (EPA/DHA-enriched). Splenic mononuclear cell cytokine production in response to lipopolysaccharide (LPS), T-cell receptor (TCR) and anti-CD40 stimulation was determined. Following LPS stimulation, AA was more bioactive compared to LA, by increasing inflammatory cytokine production of IL-6 (1.2-fold) and TNFα (1.3-fold). Further, LPS-stimulated IFNγ production in LA-fed D6KO mice was reduced 5-fold compared to LA-fed WT mice, indicating that conversion of LA to AA was necessary for cytokine production. Conversely, ALA exerted an independent immunomodulatory effect from EPA/DHA and all n-3 FA increased LPS-stimulated IL-10 production versus LA and AA. These data definitively identify specific immunomodulatory effects of individual FA and challenge the simplified view of the immunomodulatory effects of n-3 and n-6 FA.  相似文献   

5.
Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells   总被引:9,自引:0,他引:9  
The effects of linoleic acid (LA), alpha-linolenic acid (ALA), and docosahexaenoic acid (DHA) were compared to that of palmitic acid (PA), on inflammatory responses in human monocytic THP-1 cells. When cells were pre-incubated with fatty acids for 2-h and then stimulated with lipopolysaccharide for 24-h in the presence of fatty acids, secretion of interleukin (IL)-6, IL-1beta, and tumor necrosis factor-alpha (TNFalpha) was significantly decreased after treatment with LA, ALA, and DHA versus PA (P < 0.01 for all); ALA and DHA elicited more favorable effects. These effects were comparable to those for 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2) and were dose-dependent. In addition, LA, ALA, and DHA decreased IL-6, IL-1beta, and TNFalpha gene expression (P < 0.05 for all) and nuclear factor (NF)-kappaB DNA-binding activity, whereas peroxisome proliferator-activated receptor-gamma (PPARgamma) DNA-binding activity was increased. The results indicate that the anti-inflammatory effects of polyunsaturated fatty acids may be, in part, due to the inhibition of NF-kappaB activation via activation of PPARgamma.  相似文献   

6.
In the current study, we tested a hypothesis that CD36 fatty acid (FA) transporter might affect insulin sensitivity by indirect effects on FA composition of adipose tissue. We examined the effects of CD36 downregulation by RNA interference in 3T3-L1 adipocytes on FA transport and composition and on sensitivity to insulin action. Transfected 3T3-L1 adipocytes, without detectable CD36 protein, showed reduced neutral lipid levels and significant differences in FA composition when levels of essential FA and their metabolites were lower or could not be detected including gamma linolenic (C18:3 n6), eicosadienic (C20:2 n6), dihomo-gamma linolenic (C20:3 n6), eicosapentaenoic (EPA) (C20:5 n3), docosapentaenoic (DPA) (C22:5 n3), and docosahexaenoic (DHA) (C22:6 n3) FA. Transfected 3T3-L1 adipocytes exhibited a significantly higher n6/n3 FA ratio, reduced 5-desaturase and higher 9-desaturase activities. These lipid profiles were associated with a significantly reduced insulin-stimulated glucose uptake (4.02+/-0.1 vs. 8.42+/-0.26 pmol.10(-3) cells, P=0.001). These findings provide evidence that CD36 regulates FA composition thereby affecting sensitivity to insulin action in 3T3-L1 adipocytes.  相似文献   

7.
Zhang P  Liu C  Zhang C  Zhang Y  Shen P  Zhang J  Zhang CY 《FEBS letters》2005,579(6):1446-1452
PGC-1alpha mRNA and protein are elevated in islets from multiple animal models of diabetes. Overexpression of PGC-1alpha impairs glucose-stimulated insulin secretion (GSIS). However, it is not well known which metabolic events lead to upregulation of PGC-1alpha in the beta-cells under pathophysiological condition. In present study, we have investigated effects of chronic hyperlipidemia and hyperglycemia on PGC-1alpha mRNA expression in isolated rat islets. Isolated rat islets are chronically incubated with 0, 0.2 and 0.4 mM oleic acid/palmitic acid (free fatty acids, FFA) or 5.5 and 25 mM glucose for 72 h. FFA dose-dependently increases PGC-1alpha mRNA expression level in isolated islets. FFA also increases PGC-1alpha expression in mouse beta-cell-derived beta TC3 cell line. In contrast, 25 mM glucose decreases expression level of PGC-1alpha. Inhibition of PGC-1alpha by siRNA improves FFA-induced impairment of GSIS in islets. These data suggest that hyperlipidemia and hyperglycemia regulate PGC-1alpha expression in islets differently, and elevated PGC-1alpha by FFA plays an important role in chronic hyperlipidemia-induced beta-cell dysfunction.  相似文献   

8.
This study was designed to compare the effects of dietary arachidonic acid (AA) versus prostaglandin E(2) (PGE(2)) on bone cell metabolism and bone mass. Twenty-eight piglets from 7 litters were randomized to 1 of 4 treatments for 15 days: fatty acid supplemented formula (FA: 0.8% of total fatty acids as AA and 0.1% of total fatty acids as DHA)+PGE(2) injections (0.1mg/kg/day), FA+saline injections, standard formula (STD: n-6:n-3 of 8:1) + PGE(2) injections or STD+saline injections. PGE(2) resulted in elevated osteoblast activity as indicated by plasma osteocalcin and also reduced urinary calcium excretion. Dietary FA resulted in reduced bone resorption as indicated by urinary N-telopeptide and reduced bone PGE(2). Both PGE(2) and FA treatments independently lead to elevated femur mineral content, but the combined treatment caused a reduction. Thus the mechanisms by which PGE(2) and FA lead to enhanced bone mass are distinct.  相似文献   

9.
目的:探讨油酸(OA)构建兔急性呼吸窘迫综合征(ARDS)模型3天内的稳定性及血浆炎症因子IL-1、IL-8含量变化的意义。方法:健康新西兰大耳白兔30只随机分为5组,每组6只,实验组(n=24)耳缘静脉注射油酸(0.1mL/kg)建立ARDS模型,对照组(n=6)注射等量生理盐水。分别检测对照组6h和实验组6h、24h、48h、72h(n=6)动脉血PH值、PaO2、PaO2/FiO2、PaCO2、肺湿/干重比值(W/D),ELISA法检测血浆细胞因子IL-1、IL-8含量,HE染色观察肺组织病理学改变。结果:和对照组比较,实验组血中细胞因子IL-1在6h、24h组升高;细胞因子IL-8在6h组、24h组、48h组升高。6h组、24h组、48h组氧合指数<200mmHg。结论:兔油酸ARDS模型48h内稳定,炎性细胞和IL-1、IL-8可能是导致ARDS的发生和发展主要原因之一。  相似文献   

10.
11.
The effect of the cytokine interleukin-1 beta on the insulin secretory responsiveness of single beta-cells (HIT-T15) was investigated. In the short-term, IL-1 beta induced a dosage-dependent stimulation of insulin release. In contrast, in the long-term, IL-1 beta, inhibited both basal and secretagogue-stimulated insulin secretion. We also demonstrate the simultaneous presence of specific high and low affinity binding sites for IL-1 beta on beta-cells. IL-1 beta, which has been implicated in the pathogenesis of insulin-dependent diabetes, may therefore mediate its opposing effects on beta-cells through a specific plasma membrane receptor.  相似文献   

12.
This study was designed to compare the effects of dietary arachidonic acid (AA) versus prostaglandin E2 (PGE2) on bone cell metabolism and bone mass. Twenty-eight piglets from 7 litters were randomized to 1 of 4 treatments for 15 days: fatty acid supplemented formula (FA: 0.8% of total fatty acids as AA and 0.1% of total fatty acids as DHA)+PGE2 injections (0.1 mg/kg/day), FA+saline injections, standard formula (STD: n-6:n-3 of 8:1) + PGE2 injections or STD+saline injections. PGE2 resulted in elevated osteoblast activity as indicated by plasma osteocalcin and also reduced urinary calcium excretion. Dietary FA resulted in reduced bone resorption as indicated by urinary N-telopeptide and reduced bone PGE2. Both PGE2 and FA treatments independently lead to elevated femur mineral content, but the combined treatment caused a reduction. Thus the mechanisms by which PGE2 and FA lead to enhanced bone mass are distinct.  相似文献   

13.
Prostaglandin H synthase 2 (PGHS-2), a highly inducible isoenzyme, is responsible for overproduction of the prostaglandins (PGs) in inflammatory sites.We established that among fish oil polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), but not docosahexaenoic acid (DHA), greatly decreased interleukin-1beta (IL-1beta)-induced PGHS-2 expression in human pulmonary microvascular endothelial cells (HPMECs). Lipoxygenase products 12 (S)-hydroperoxyeicosapentaenoic acid ((S)-HpEPE), 15 (S)-HpEPE and leukotriene (LT) D5 reproduced similar inhibitory effect, suggesting that they may be the intermediate metabolites responsible for PGHS-2 down-regulation by EPA. Accordingly, the EPA effect is prevented by nordihydroguaiaretic acid (NDGA) and by REV 5901, nonspecific and specific 5-lipoxygenase inhibitors, respectively. Besides, inhibition of cyclooxygenase activity by ibuprofen, indomethacin or aspirin was not able to prevent this effect. Moreover, cyclooxygenase metabolites of EPA (PGs D3, E3 and I3) markedly potentiate IL-1beta-induced PGHS-2 expression, probably by increasing intracellular cAMP levels. Peroxisome proliferator-activated receptors (PPARs) are known to be activated by fatty acids (FAs) such as EPA. We found here that HPMECs express only weak amounts of PPARalpha and PPARgamma whose activation by synthetic agonists, Wy-14,643 and ciglitazone, does not cause any inhibition of IL-1beta-induced PGHS-2 expression. This finding ruled out the involvement of PPARs in the EPA inhibitory effect. In addition, we established that EPA, which failed to inhibit nuclear factor-kappaB (NF-kappaB) activation, suppressed p38 mitogen-activated protein kinase (MAPK) phosphorylation in stimulated HPMECs.Our data demonstrate that EPA, unlike DHA, down-regulates PGHS-2 expression in HPMECs probably through its 5-lipoxygenase-dependent metabolites and advocates a beneficial role for this FA in limiting inflammatory response.  相似文献   

14.
We investigated the effects of dietary administration of docosahexaenoic acid (DHA; C22:6n-3) on the levels of amyloid beta (A beta) peptide (1-40) and cholesterol in the nonionic detergent Triton 100 x-insoluble membrane fractions (DIFs) of the cerebral cortex and, also, on learning-related memory in an animal model of Alzheimer's disease (AD) rats infused with A beta peptide (1-40) into the cerebral ventricle. The infusion increased the levels of A beta peptide and cholesterol in the DIFs concurrently with a significant increase in reference memory errors (measured by eight-arm radial-maze tasks) compared with those of vehicle rats. Conversely, the dietary administration of DHA to AD-model rats decreased the levels of A beta peptide and cholesterol in the DIFs, with the decrease being more prominent in the DHA-administered rats. Regression analysis revealed a significant positive correlation between A beta peptide and each of cholesterol, palmitic acid and stearic acid, and between the number of reference memory errors and each of cholesterol, palmitic, stearic and oleic acid; moreover, a significant negative correlation was observed between the number of reference memory errors and the molar ratio of DHA to palmitic plus stearic acid. These results suggest that DHA-induced protection of memory deficits in AD-model rats is related to the interactions of cholesterol, palmitic acid or stearic acid with A beta peptides in DIFs where DHA ameliorates these interactions.  相似文献   

15.
Exposure of pancreatic beta-cells to interleukin-1 beta (IL-1 beta) alters their protein expression and phenotype. Previous work has shown that IL-1 beta inhibited proinsulin conversion in rat islets, but the mechanism of this inhibition remained unknown. To investigate this phenomenon further, we examined purified rat beta-cells for IL-1 beta-induced inhibition of proinsulin conversion and nitric oxide (NO)-dependency of this inhibitory process. Rat beta-cells were cultured for 24 h with or without IL-1 beta and the inducible-nitric-oxide-synthase (iNOS) inhibitor N(G)-methyl-L-arginine (NMA). Exposure to IL-1 beta suppressed proinsulin-1 and proinsulin-2 synthesis by more than 50 %. Conversion of both proinsulin isoforms was also delayed. The suppressive effects of IL-1 beta on proinsulin synthesis and conversion were prevented by addition of NMA. Exposure to IL-1 beta also decreased the expression of the proinsulin convertase (PC) PC2. This decrease in PC2 expression was NO-dependent. In conclusion, IL-1 beta inhibition of proinsulin conversion in rat beta-cells occurs via an NO-mediated pathway.  相似文献   

16.
17.
Biguanides and thiazolidinediones (TZDs), which are primarily used as anti-diabetic drugs, are also associated with other beneficial effects on cardiovascular risk factors such as reduced plasma plasminogen activator inhibitor-1 (PAI-1) concentration in both diabetic and non-diabetic obese subjects. Since human adipose tissue is of importance for the production of PAI-1, the aim of the present study was to investigate the possible direct effects of these anti-diabetic agents on PAI-1 mRNA and secretion by human adipose tissue. Adipose tissue was obtained from biopsies taken from the subcutaneous abdominal depot. Adipose tissue fragments, isolated mature adipocytes, and preadipocytes were incubated in vitro with metformin and various TZDs. Metformin (0.1 - 10 mM) dose-dependently decreased PAI-1 production (and PAI-1 mRNA) under both basal (43 % inhibition at 10 mM, p < 0.05) and interleukin-1beta (IL-1beta)-stimulated conditions where the levels were inhibited by 47.8 % at 1 mM metformin (p < 0.05) and by 100 % at 10 mM (p < 0.01). None of the TZDs tested (PPAR-gamma agonists: troglitazone, pioglitazone, or ciglitazone) had any effects on PAI-1 production. Moreover, no effects on PAI-1 production were observed using various PPAR-alpha agonists such as 5, 8, 11, 14-eicosatetraynoic acid (ETYA), Wy14643 and fenofibrate. Our findings indicate no direct effects of TZDs on PAI-1 secretion, whereas metformin was able to directly inhibit PAI-1 production in human adipose tissue.  相似文献   

18.
19.
Human recombinant interleukin-1 beta (IL-1beta), administered by intravenous drop infusion, at doses of 10-20 ng/kg daily over 5 days, to a group of 67 patients suffering from malignant tumors and with grade II-IV toxic leukopenia, caused an increase in the leukocyte count to the normal value, within, on average, 8 +/- 1 days. The leukostimulatory effect of IL-1beta, administered subcutaneously at an average dose of 4.6 +/- 0.3 ng/kg (n = 16), appeared to be almost equal to that found for intravenous drop infusion at a dose of 10-20 ng/kg (n = 67). In patients receiving subcutaneous IL-1beta injections, the peripheral blood total leukocyte and granulocyte counts achieved normal values within 9 days. The side effects of IL-1beta at a dose of 0.1-20.0 ng/kg were well tolerated.  相似文献   

20.
It has previously been demonstrated that interleukin-1 (IL-1) is expressed in a variety of fibroblast cell lines. In this study, we investigated the mechanisms involved in the regulation of IL-1 beta production by cultured human dermal fibroblasts. We have shown that IL-1 beta is constitutively expressed as a cell-associated form, with no soluble form detectable in control cell or in stimulated cell supernatants. IL-1 alpha and tumor necrosis factor-alpha (TNF-alpha) exerted a dose-dependent stimulation on the production of the cell-associated IL-1 beta, as estimated using a specific enzyme linked immunosorbent assay (ELISA). As expected, this effect was accompanied by a huge release of prostaglandin E2 (PGE2) and a transient rise in intracellular cyclic AMP. Furthermore, IL-1 beta production was elevated to a lesser extent by the addition of increasing concentrations of the protein kinase C activator phorbol myristate acetate or by low concentration (0.001 microgram/ml) of PGE2. In contrast, higher concentrations (0.1 and 1 micrograms/ml) of PGE2, as well as exogenous dibutyryl-cyclic AMP, were clearly inhibitory. H7, an inhibitor of protein kinases also reduced the stimulatory effect of IL-1 alpha and TNF-alpha. Together with the results obtained with phorbol myristate acetate, these data suggest that protein kinase C may play a role in the upregulation of IL-1 beta expression in normal skin fibroblasts. The addition of indomethacin not only suppressed prostaglandin synthesis, but also dramatically reduced cyclic AMP formation, probably because the PGE2-induced stimulation of adenylate cyclase was abolished. This resulted in a strong potentiation of the stimulatory effect of IL-1 alpha and TNF-alpha, supporting the role of both the cyclooxygenase and adenylate cyclase pathways in the endogenous downregulation of IL-1 beta induction by the two cytokines studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号