首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Alternative splicing of human cystic fibrosis transmembrane conductance regulator (CFTR) exon 9 is regulated by a combination of cis-acting elements distributed through the exon and both flanking introns (IVS8 and IVS9). Several studies have identified in the IVS8 intron 3' splice site a regulatory element that is composed of a polymorphic (TG)m(T)n repeated sequence. At present, no cellular factors have been identified that recognize this element. We have identified TDP-43, a nuclear protein not previously described to bind RNA, as the factor binding specifically to the (TG)m sequence. Transient TDP-43 overexpression in Hep3B cells results in an increase in exon 9 skipping. This effect is more pronounced with concomitant overexpression of SR proteins. Antisense inhibition of endogenous TDP-43 expression results in increased inclusion of exon 9, providing a new therapeutic target to correct aberrant splicing of exon 9 in CF patients. The clinical and biological relevance of this finding in vivo is demonstrated by our characterization of a CF patient carrying a TG10T9(DeltaF508)/TG13T3(wt) genotype leading to a disease-causing high proportion of exon 9 skipping.  相似文献   

2.
TDP-43 is linked to neurodegenerative diseases including frontotemporal dementia and amyotrophic lateral sclerosis. Mostly localized in the nucleus, TDP-43 acts in conjunction with other ribonucleoproteins as a splicing co-factor. Several RNA targets of TDP-43 have been identified so far, but its role(s) in pathogenesis remains unclear. Using Affymetrix exon arrays, we have screened for the first time for splicing events upon TDP-43 knockdown. We found alternative splicing of the ribosomal S6 kinase 1 (S6K1) Aly/REF-like target (SKAR) upon TDP-43 knockdown in non-neuronal and neuronal cell lines. Alternative SKAR splicing depended on the first RNA recognition motif (RRM1) of TDP-43 and on 5'-GA-3' and 5'-UG-3' repeats within the SKAR pre-mRNA. SKAR is a component of the exon junction complex, which recruits S6K1, thereby facilitating the pioneer round of translation and promoting cell growth. Indeed, we found that expression of the alternatively spliced SKAR enhanced S6K1-dependent signaling pathways and the translational yield of a splice-dependent reporter. Consistent with this, TDP-43 knockdown also increased translational yield and significantly increased cell size. This indicates a novel mechanism of deregulated translational control upon TDP-43 deficiency, which might contribute to pathogenesis of the protein aggregation diseases frontotemporal dementia and amyotrophic lateral sclerosis.  相似文献   

3.
Cystic fibrosis is a prominent genetic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Among the many disease-causing alterations are pre-mRNA splicing defects that can hamper mandatory exon inclusion. CFTR exon 9 splicing depends in part on a polymorphic UG(m)U(n) sequence at the end of intron 8, which can be bound by TDP-43, leading to partial exon 9 skipping. CELF proteins, like CUG-BP1 and ETR-3, can also bind UG repeats and regulate splicing. We show here that ETR-3, but not CUG-BP1, strongly stimulates exon 9 skipping, although both proteins bind efficiently to the same RNA motif as TDP-43 and with higher affinity. We further show that the skipping of this exon may be due to the functional antagonism between U2AF65 and ETR-3 binding onto the polymorphic U or UG stretch, respectively. Importantly, we demonstrate that the divergent domain of ETR-3 is critical for CFTR exon 9 skipping, as shown by deletion and domain-swapping experiments. We propose a model whereby several RNA-binding events account for the complex regulation of CFTR exon 9 inclusion, with strikingly distinct activities of ETR-3 and CUG-BP1, related to the structure of their divergent domain.  相似文献   

4.
Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR. We first found that RRM1 was prone to aggregation and had three regions showing stable chemical shifts during misfolding. Moreover, mass spectrometric analysis of aggregated RRM1 revealed that one of the regions was located on protease-resistant β-strands containing two cysteines (Cys-173 and Cys-175), indicating that this region served as a core assembly interface in RRM1 aggregation. Although a fraction of RRM1 aggregates comprised disulfide-bonded oligomers, the substitution of cysteine(s) to serine(s) (C/S) resulted in unexpected acceleration of amyloid fibrils of RRM1 and disulfide-independent aggregate formation of full-length TDP-43. Notably, TDP-43 aggregates with RRM1-C/S required the C terminus, and replicated cytopathologies of ALS, including mislocalization, impaired RNA splicing, ubiquitination, phosphorylation, and motor neuron toxicity. Furthermore, RRM1-C/S accentuated inclusions of familial ALS-linked TDP-43 mutants in the C terminus. The relevance of RRM1-C/S-induced TDP-43 aggregates in ALS pathogenesis was verified by immunolabeling of inclusions of ALS patients and cultured cells overexpressing the RRM1-C/S TDP-43 with antibody targeting misfolding-relevant regions. Our results indicate that cysteines in RRM1 crucially govern the conformation of TDP-43, and aberrant self-assembly of RRM1 at amyloidogenic regions contributes to pathogenic conversion of TDP-43 in ALS.  相似文献   

5.
TDP-43 is an important pathological protein that aggregates in the diseased neuronal cells and is linked to various neurodegenerative disorders. In normal cells, TDP-43 is primarily an RNA-binding protein; however, how the dimeric TDP-43 binds RNA via its two RNA recognition motifs, RRM1 and RRM2, is not clear. Here we report the crystal structure of human TDP-43 RRM1 in complex with a single-stranded DNA showing that RRM1 binds the nucleic acid extensively not only by the conserved β-sheet residues but also by the loop residues. Mutational and biochemical assays further reveal that both RRMs in TDP-43 dimers participate in binding of UG-rich RNA or TG-rich DNA with RRM1 playing a dominant role and RRM2 playing a supporting role. Moreover, RRM1 of the amyotrophic lateral sclerosis-linked mutant D169G binds DNA as efficiently as the wild type; nevertheless, it is more resistant to thermal denaturation, suggesting that the resistance to degradation is likely linked to TDP-43 proteinopathies. Taken together all the data, we suggest a model showing that the two RRMs in each protomer of TDP-43 homodimer work together in RNA binding and thus the dimeric TDP-43 recognizes long clusters of UG-rich RNA to achieve high affinity and specificity.  相似文献   

6.
TAR DNA-binding protein 43 (TDP-43) is associated with a spectrum of neurodegenerative diseases. Although TDP-43 resembles heterogeneous nuclear ribonucleoproteins, its RNA targets and physiological protein partners remain unknown. Here we identify RNA targets of TDP-43 from cortical neurons by RNA immunoprecipitation followed by deep sequencing (RIP-seq). The canonical TDP-43 binding site (TG)(n) is 55.1-fold enriched, and moreover, a variant with adenine in the middle, (TG)(n)TA(TG)(m), is highly abundant among reads in our TDP-43 RIP-seq library. TDP-43 RNA targets can be divided into three different groups: those primarily binding in introns, in exons, and across both introns and exons. TDP-43 RNA targets are particularly enriched for Gene Ontology terms related to synaptic function, RNA metabolism, and neuronal development. Furthermore, TDP-43 binds to a number of RNAs encoding for proteins implicated in neurodegeneration, including TDP-43 itself, FUS/TLS, progranulin, Tau, and ataxin 1 and -2. We also identify 25 proteins that co-purify with TDP-43 from rodent brain nuclear extracts. Prominent among them are nuclear proteins involved in pre-mRNA splicing and RNA stability and transport. Also notable are two neuron-enriched proteins, methyl CpG-binding protein 2 and polypyrimidine tract-binding protein 2 (PTBP2). A PTBP2 consensus RNA binding motif is enriched in the TDP-43 RIP-seq library, suggesting that PTBP2 may co-regulate TDP-43 RNA targets. This work thus reveals the protein and RNA components of the TDP-43-containing ribonucleoprotein complexes and provides a framework for understanding how dysregulation of TDP-43 in RNA metabolism contributes to neurodegeneration.  相似文献   

7.
Accumulating evidence suggests that pathogenic TAR DNA-binding protein (TDP)-43 fragments contain a partial RNA-recognition motif domain 2 (RRM2) in amyotrophic lateral sclerosis (ALS)/frontotemporal lobar degeneration. However, the molecular basis for how this domain links to the conformation and function of TDP-43 is unclear. Previous crystal analyses have documented that the RRM2-DNA complex dimerizes under acidic and high salt conditions, mediated by the intermolecular hydrogen bonds of Glu246-Ile249 and Asp247-Asp247. The aims of this study were to investigate the roles of Glu246 and Asp247 in the molecular assembly of RRM2 under physiological conditions, and to evaluate their potential use as markers for TDP-43 misfolding due to the aberrantly exposed dimer interface. Unexpectedly, gel filtration analyses showed that, regardless of DNA interaction, the RRM2 domain remained as a stable monomer in phosphate-buffered saline. Studies using substitution mutants revealed that Glu246 and, especially, Asp247 played a crucial role in preserving the functional RRM2 monomers. Substitution to glycine at Glu246 or Asp247 induced the formation of fibrillar oligomers of RRM2 accompanied by the loss of DNA-binding affinity, which also affected the conformation and the RNA splicing function of full-length TDP-43. A novel monoclonal antibody against peptides containing Asp247 was found to react with TDP-43 inclusions of ALS patients and mislocalized cytosolic TDP-43 in cultured cells, but not with nuclear wild-type TDP-43. Our findings indicate that Glu246 and Asp247 play pivotal roles in the proper conformation and function of TDP-43. In particular, Asp247 should be studied as a molecular target with an aberrant conformation related to TDP-43 proteinopathy.  相似文献   

8.
TDP-43 is a highly conserved nuclear factor of yet unknown function that binds to ug-repeated sequences and is responsible for cystic fibrosis transmembrane conductance regulator exon 9 splicing inhibition. We have analyzed TDP-43 interactions with other splicing factors and identified the critical regions for the protein/protein recognition events that determine this biological function. We show here that the C-terminal region of TDP-43 is capable of binding directly to several proteins of the heterogeneous nuclear ribonucleoprotein (hnRNP) family with well known splicing inhibitory activity, in particular, hnRNP A2/B1 and hnRNP A1. Mutational analysis showed that TDP-43 proteins lacking the C-terminal region could not inhibit splicing probably because they were unable to form the hnRNP-rich complex involved in splicing inhibition. Finally, through splicing complex analysis, we show that splicing inhibition mediated by TDP-43 occurs at the earliest stages of spliceosomal assembly.  相似文献   

9.
Two intronic elements, a polymorphic TGmTn locus at the end of intron 8 and an intronic splicing silencer in intron 9, regulate aberrant splicing of human cystic fibrosis transmembrane conductance regulator (CFTR) exon 9. Previous studies (Pagani, F., Buratti, E., Stuani, C., Romano, M., Zuccato, E., Niksic, M., Giglio, L., Faraguna, D., and Baralle, F. E. (2000) J. Biol. Chem. 275, 21041-21047 and Buratti, E., Dork, T., Zuccato, E., Pagani, F., Romano, M., and Baralle, F. E. (2001) Embo J. 20, 1774-1784) have demonstrated that trans-acting factors that bind to these sequences, TDP43 and Ser/Arg-rich proteins, respectively, mediate splicing inhibition. Here, we report the identification of two polypyrimidine-binding proteins, TIA-1 and polypyrimidine tract-binding protein (PTB), as novel players in the regulation of CFTR exon 9 splicing. In hybrid minigene experiments, TIA-1 induced exon inclusion, whereas PTB induced exon skipping. TIA-1 bound specifically to a polypyrimidine-rich controlling element (PCE) located between the weak 5'-splice site (ss) and the intronic splicing silencer. Mutants of the PCE polypyrimidine motifs did not bind TIA-1 and, in a splicing assay, did not respond to TIA-1 splicing enhancement. PTB antagonized in vitro TIA-1 binding to the PCE, but its splicing inhibition was independent of its binding to the PCE. Recruitment of U1 small nuclear RNA to the weak 5'-ss by complementarity also induced exon 9 inclusion, consistent with the facilitating role of TIA-1 in weak 5'-ss recognition by U1 small nuclear ribonucleoprotein. Interestingly, in the presence of a high number of TG repeats and a low number of T repeats in the TGmTn locus, TIA-1 activated a cryptic exonic 3'-ss. This effect was independent of both TIA-1 binding to the PCE and U1 small nuclear RNA recruitment to the 5'-ss. Moreover, it was abolished by deletion of either the TG or T sequence. These data indicate that, in CFTR exon 9, TIA-1 binding to the PCE recruits U1 small nuclear ribonucleoprotein to the weak 5'-ss and induces exon inclusion. The TIA-1-mediated alternative usage of the 3'-splice sites, which depends on the composition of the unusual TGmTn element, represents a new mechanism of splicing regulation by TIA-1.  相似文献   

10.
Aggregation of TAR DNA binding protein-43 (TDP-43) is a hallmark feature of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Under pathogenic conditions, abnormal cleavage of TDP-43 produces the phosphorylated C-terminal fragments (CTFs), which are enriched in neuronal inclusions; however, molecular properties of those TDP-43 fragments remain to be characterized. Here we show distinct degrees of solubility and phosphorylation among fragments truncated at different sites of TDP-43. Truncations were tested mainly within a second RNA recognition motif (RRM2) of TDP-43; when the truncation site was more C-terminal in an RRM2 domain, a TDP-43 CTF basically became less soluble and more phosphorylated in differentiated Neuro2a cells. We also found that cleavage at the third β-strand in RRM2 leads to the formation of SDS-resistant soluble oligomers. Molecular properties of TDP-43 fragments thus significantly depend upon its cleavage site, which might reflect distinct molecular pathologies among sub-types of TDP-43 proteinopathies.  相似文献   

11.
12.
13.
Pathological alteration of TDP-43 (TAR DNA-binding protein-43), a protein involved in various RNA-mediated processes, is a hallmark feature of the neurodegenerative diseases amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Fragments of TDP-43, composed of the second RNA recognition motif (RRM2) and the disordered C terminus, have been observed in cytoplasmic inclusions in sporadic amyotrophic lateral sclerosis cases, suggesting that conformational changes involving RRM2 together with the disordered C terminus play a role in aggregation and toxicity. The biophysical data collected by CD and fluorescence spectroscopies reveal a three-state equilibrium unfolding model for RRM2, with a partially folded intermediate state that is not observed in RRM1. Strikingly, a portion of RRM2 beginning at position 208, which mimics a cleavage site observed in patient tissues, increases the population of this intermediate state. Mutually stabilizing interactions between the domains in the tethered RRM1 and RRM2 construct reduce the population of the intermediate state and enhance DNA/RNA binding. Despite the high sequence homology of the two domains, a network of large hydrophobic residues in RRM2 provides a possible explanation for the increased stability of RRM2 compared with RRM1. The cluster analysis suggests that the intermediate state may play a functional role by enhancing access to the nuclear export signal contained within its sequence. The intermediate state may also serve as a molecular hazard linking productive folding and function with pathological misfolding and aggregation that may contribute to disease.  相似文献   

14.
Cytoplasmic inclusions containing TAR DNA-binding protein of 43 kDa (TDP-43) or Fused in sarcoma (FUS) are a hallmark of amyotrophic lateral sclerosis (ALS) and several subtypes of frontotemporal lobar degeneration (FTLD). FUS-positive inclusions in FTLD and ALS patients are consistently co-labeled with stress granule (SG) marker proteins. Whether TDP-43 inclusions contain SG markers is currently still debated. We determined the requirements for SG recruitment of FUS and TDP-43 and found that cytoplasmic mislocalization is a common prerequisite for SG recruitment of FUS and TDP-43. For FUS, the arginine-glycine-glycine zinc finger domain, which is the protein's main RNA binding domain, is most important for SG recruitment, whereas the glycine-rich domain and RNA recognition motif (RRM) domain have a minor contribution and the glutamine-rich domain is dispensable. For TDP-43, both the RRM1 and the C-terminal glycine-rich domain are required for SG localization. ALS-associated point mutations located in the glycine-rich domain of TDP-43 do not affect SG recruitment. Interestingly, a 25-kDa C-terminal fragment of TDP-43, which is enriched in FTLD/ALS cortical inclusions but not spinal cord inclusions, fails to be recruited into SG. Consistently, inclusions in the cortex of FTLD patients, which are enriched for C-terminal fragments, are not co-labeled with the SG marker poly(A)-binding protein 1 (PABP-1), whereas inclusions in spinal cord, which contain full-length TDP-43, are frequently positive for this marker protein.  相似文献   

15.
16.
TDP-43 (transactive- response DNA binding protein) amazes structural biologist as its aberrant ubiquitinated cytosolic inclusions is largely involved in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). An important question in TDP-43 research is to identify the structural region mediating the formation of cytoplasmic pathological aggregates. In this study, we attempted to delineate the aggregation-prone sequences of the structural domain of TDP-43. Here, we investigated the self-assembly of peptides of TDP-43 using aggregation prediction algorithms, Zipper DB and AMYLPRED2. The three aggregation-prone peptides identified were from N-terminal domain (24GTVLLSTV31), and RNA recognition motifs, RRM1 (128GEVLMVQV135) and RRM2 (247DLIIKGIS254). Furthermore, the amyloid fibril forming propensities of these peptides were analyzed through different biophysical techniques and molecular dynamics simulation. Our study shows the different aggregation ability of conserved stretches in structural domain of TDP-43 that will possibly induce full-length aggregation of TDP-43 in vivo. The peptide form RRM2 demonstrates the higher intrinsic amyloid forming propensity and suggests that RRM2 might form the structural core of TDP-43 aggregation seen in vivo. The results of this study would help in designing peptide based inhibitors of TDP-43 aggregation.  相似文献   

17.
In monosymptomatic forms of cystic fibrosis such as congenital bilateral absence of vas deferens, variations in the TG(m) and T(n) polymorphic repeats at the 3' end of intron 8 of the cystic fibrosis transmembrane regulator (CFTR) gene are associated with the alternative splicing of exon 9, which results in a nonfunctional CFTR protein. Using a minigene model system, we have previously shown a direct relationship between the TG(m)T(n) polymorphism and exon 9 splicing. We have now evaluated the role of splicing factors in the regulation of the alternative splicing of this exon. Serine-arginine-rich proteins and the heterogeneous nuclear ribonucleoprotein A1 induced exon skipping in the human gene but not in its mouse counterpart. The effect of these proteins on exon 9 exclusion was strictly dependent on the composition of the TG(m) and T(n) polymorphic repeats. The comparative and functional analysis of the human and mouse CFTR genes showed that a region of about 150 nucleotides, present only in the human intron 9, mediates the exon 9 splicing inhibition in association with exonic regulatory elements. This region, defined as the CFTR exon 9 intronic splicing silencer, is a target for serine-arginine-rich protein interactions. Thus, the nonevolutionary conserved CFTR exon 9 alternative splicing is modulated by the TG(m) and T(n) polymorphism at the 3' splice region, enhancer and silencer exonic elements, and the intronic splicing silencer in the proximal 5' intronic region. Tissue levels and individual variability of splicing factors would determine the penetrance of the TG(m)T(n) locus in monosymptomatic forms of cystic fibrosis.  相似文献   

18.
Phosphorylated and truncated TAR DNA-binding protein-43 (TDP-43) is a major component of ubiquitinated cytoplasmic inclusions in neuronal and glial cells of two TDP-43 proteinopathies, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Modifications of TDP-43 are thus considered to play an important role in the pathogenesis of TDP-43 proteinopathies. However, both the initial cause of these abnormal modifications and the TDP-43 region responsible for its aggregation remain uncertain. Here we report that the 32 kDa C-terminal fragment of TDP-43, which lacks the RNP2 motif of RNA binding motif 1 (RRM1), formed aggregates in cultured cells, and that similar phenotypes were obtained when the RNP2 motif was either deleted from or mutated in full-length TDP-43. These aggregations were ubiquitinated, phosphorylated and truncated, and sequestered the 25 kDa C-terminal TDP-43 fragment seen in the neurons of TDP-43 proteinopathy patients. In addition, incubation with RNase decreased the solubility of TDP-43 in cell lysates. These findings suggest that the RNP2 motif of RRM1 plays a substantial role in pathological TDP-43 modifications and that it is possible that disruption of RNA binding may underlie the process of TDP-43 aggregation.  相似文献   

19.
20.
TAR DNA-binding protein 43 (TDP-43) inclusions have been found in Amyotrophic lateral sclerosis (ALS) and several other neurodegenerative diseases. Many studies suggest the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy. To elucidate the structural stability and the unfolding dynamics of RRMs, we have carried out atomistic molecular dynamics simulations at two different temperatures (300 and 500 K). The simulations results indicate that there are distinct structural differences in the unfolding pathway between the two domains and RRM1 unfolds faster than RRM2 in accordance with the lower thermal stability found experimentally. The unfolding behaviors of secondary structures showed that the α-helix was more stable than β-sheet and structural rearrangements of β-sheets results in formation of additional α-helices. At higher temperature, RRM1 exhibit increased overall flexibility and unfolding than RRM2. The temperature-dependent free energy landscapes consist of multiple metastable states stabilized by non-native contacts and hydrogen bonds in RRM2, thus rendering the RRM2 more prone to misfolding. The structural rearrangements of RRM2 could lead to aberrant protein–protein interactions that may account for enhanced aggregation and toxicity of TDP-43. Our analysis, thus identify the structural and thermodynamic characteristics of the RRMs of TDP-43, which will serve to uncover molecular mechanisms and driving forces in TDP-43 misfolding and aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号