首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of α-amylase in batch and continuous cultures of the strain SP of Bacillus caldolyticus was studied using a maltose-casitone medium. The three quantitative parameters of α-amylase production (maximum values of the specific production rate, volumetric productivity and concentration of α-amylase) increased in continuous culture by 2.5, 4.6 and 3.8 times respectively in comparison with a batch culture. It was found that a mutant strain M1 of α-amylase production was predominant in every run of the continuous cultures. The strain M1 differs from the strain SP in that it can produce α-amylase constitutively in a batch culture while the cells of strain SP require maltose for α-amylase production. On the contrary, α-amylase production by the strain M1 was repressed partly by maltose. Moreover, glucose repression on α-amylase production was not observed for the M1 strain while it was remarkable for the strain SP. The above-mentioned properties of the mutant M1 concerning the regulation of α-amylase production are not only advantageous for industrial use but also interesting from the viewpoint of basic microbiology.  相似文献   

2.
Summary In a continuous culture of Bacillus caldolyticus strain SP, which requires maltose as an inducer for production of -amylase in batch culture, a predominant mutant strain M1 which produced high amounts of -amylase in the absence of maltose in batch culture, developed. The change of cell population from strain SP to strain M1 in maltose-casitone medium was linear with time in the transient state after the change from batch to continuous culture at a dilution rate of 0.17 h-1, and was completed in about 11 generations of bacterial growth. The dilution rate effect of continuous culture on -amylase activity was almost the same with both strains SP and M1. The maximum -amylase activity of 380 units/ml was observed at an intermediate dilution rate that was 11.5 times higher than -amylase activity at the end of a batch culture using the same medium. It was deduced that the enhancement of -amylase production in continuous culture was attributed partly to the predominant growth of a mutant strain with higher -amylase productivity.  相似文献   

3.
The continuous cultivation of mycoplasmas in a pH-controlled metabolistat was investigated with the fermentative strain Mycoplasma mobile 163K and the nonfermentative strain Mycoplasma arthritidis ISR1. The addition of medium and the removal of culture suspension were regulated by acid production from glucose by M. mobile 163K and by ammonium production from arginine by M. arthritidis ISR1, respectively. For both strains the optimal pH for continuous growth was 7.0. The steady state could be maintained for at least 21 days. With CFU of 8.4 X 10(9) ml-1 (M. mobile 163K) and 3.2 X 10(9) ml-1 (M. arthritidis ISR1), the cell concentrations were slightly higher than those obtained in batch cultures. The dependence on the adjusted pH values was measured for several parameters, such as flow rate, CFU, glucose fermentation or production of ammonia, and gliding velocity. Since the long lag phases of batch cultures can be avoided, pH-controlled continuous cultures provide an appropriate system for the production of mycoplasma cells.  相似文献   

4.
The continuous cultivation of mycoplasmas in a pH-controlled metabolistat was investigated with the fermentative strain Mycoplasma mobile 163K and the nonfermentative strain Mycoplasma arthritidis ISR1. The addition of medium and the removal of culture suspension were regulated by acid production from glucose by M. mobile 163K and by ammonium production from arginine by M. arthritidis ISR1, respectively. For both strains the optimal pH for continuous growth was 7.0. The steady state could be maintained for at least 21 days. With CFU of 8.4 X 10(9) ml-1 (M. mobile 163K) and 3.2 X 10(9) ml-1 (M. arthritidis ISR1), the cell concentrations were slightly higher than those obtained in batch cultures. The dependence on the adjusted pH values was measured for several parameters, such as flow rate, CFU, glucose fermentation or production of ammonia, and gliding velocity. Since the long lag phases of batch cultures can be avoided, pH-controlled continuous cultures provide an appropriate system for the production of mycoplasma cells.  相似文献   

5.
The production of staphylocoagulase was studied with continuous cultures of various S. aureus strains in a simple salts medium supplemented with mannitol, casein hydrolysate and three vitamins. Conditions of low oxygen availability and magnesium-limitation were required for optimal steady-state staphylocoagulase production. It was demonstrated that the specific rate of staphylocoagulase production was dependent on the growth rate.In two bovine strains, the production rate pattern was similar to that of an inducible enzyme sensitive to catabolite repression, although no specific inductor or repressor could be demonstrated. The human strain, on the other hand, produced staphylocoagulase constitutively. In all strains the specific rate of production of total extracellular protein was strictly proportional to the growth rate. The bovine strains produced 6 times more staphylocoagulase in chemostat culture as compared with batch cultures of the same organisms.It is likely that mannitol functioned as an energy source rather than as a carbon source because it was converted for a major part to acetate and for a minor part to lactate and not to new cell material. Repression of staphylocoagulase production by mannitol, acetate or lactate was not observed. The probable nature of the regulating mechanism(s) underlying staphylocoagulase production is discussed.  相似文献   

6.
Continuous culture of Bacillus popilliae was achieved for the first time in a small chemostat. Initially, variable cell yields during steady-state chemostat growth led to a re-examination of growth rates in batch cultures. B. popilliae NRRL B-2309 and a wild strain were both found to be natural mixtures of three substrains characterized by different growth rates and colony morphologies and varying stability. Selected subcultures grown continuously provided data for three different cell production curves. Cell yields were two to three times greater per unit of medium in continuous than in batch culture, and about 1% of slow-growing chemostat cells formed typical spores.  相似文献   

7.
Continuous culture of Bacillus popilliae was achieved for the first time in a small chemostat. Initially, variable cell yields during steady-state chemostat growth led to a re-examination of growth rates in batch cultures. B. popilliae NRRL B-2309 and a wild strain were both found to be natural mixtures of three substrains characterized by different growth rates and colony morphologies and varying stability. Selected subcultures grown continuously provided data for three different cell production curves. Cell yields were two to three times greater per unit of medium in continuous than in batch culture, and about 1% of slow-growing chemostat cells formed typical spores.  相似文献   

8.
The growth kinetics of an Escherichia coli wild type strain and two derivative mutants were examined in batch cultures and in glucose-limited chemostats. One mutant (PB12) had an inactive phosphotranferase transport system and the other (PB25) had interrupted pykA and pykF genes that code for the two pyruvate kinase isoenzymes. In both batch and continuous culture, important differences in acetic acid accumulation and other metabolic activities were found. Compared to the wild type strain, we observed a reduction in acetic acid accumulation of 25 and 80% in PB25 and PB12 strains respectively, in batch culture. Continuous culture experiments revealed that compared to the other two strains, PB25 accumulated less acetic acid as a function of dilution rate. In continuous cultures, oxidoreductase metabolic activities were substantially affected in the two mutant strains. These changes in turn were reflected in different levels of biomass and CO2 production, and in oxygen consumption.  相似文献   

9.
The microbial production of free fatty acids (FFAs) and reduced derivatives is an attractive process for the renewable production of diesel fuels. Toward this goal, a plasmid-free strain of Escherichia coli was engineered to produce FFAs by integrating three copies of a thioesterase gene from Umbellularia californica (BTE) under the control of an inducible promoter onto the chromosome. In batch culture, the resulting strain produced identical titers to a previously reported strain that expressed the thioesterase from a plasmid. The growth rate, glucose consumption rate, and FFA production rate of this strain were studied in continuous cultivation under carbon limitation. The highest yield of FFA on glucose was observed at a dilution rate of 0.05 h(-1) with the highest specific productivity observed at a dilution rate of 0.2 h(-1). The observed yields under the lowest dilution rate were 15% higher than that observed in batch cultures. An increase in both productivity and yield (≈ 40%) was observed when the composition of the nutrients was altered to shift the culture toward non-carbon limitation. A deterministic model of the production strain has been proposed and indicates that maintenance requirements for this strain are significantly higher than wild-type E. coli.  相似文献   

10.
Highly branched mutants of two strains of Aspergillus oryzae (IFO4177, which produces alpha-amylase, and a transformant of IFO4177 [AMG#13], which produces heterologous glucoamylase in addition to alpha-amylase) were generated by UV or nitrous acid mutagenesis. Four mutants of the parental strain (IFO4177), which were 10 to 50% more branched than the parental strain, were studied in stirred batch culture and no differences were observed in either the amount or the rate of enzyme production. Five mutants of the transformed parental strain (AMG#13), which were 20 to 58% more branched than the parental strain, were studied in either batch, fed-batch or continuous culture. In batch culture, three of the mutants produced more glucoamylase than the transformed parental strain, although only two mutants produced more glucoamylase and alpha-amylase combined. No increase in enzyme production was observed in either chemostat or fed-batch culture. Cultures of highly branched mutants were less viscous than those of the parental and transformed parental strains. A linear relationship was found between the degree of branching (measured as hyphal growth unit length) and culture viscosity (measured as the torque exerted on the rheometer impeller) for these strains. DOT-controlled fed-batch cultures (in which the medium feed rate was determined by the DOT) were thus inoculated with either the transformed parent or highly branched mutants of the transformed parent to determine whether the reduced viscosity would improve aeration and give higher enzyme yields. The average rate of medium addition was higher for the two highly branched mutants (ca. 8.3 g medium h(-1)) than for the parental strain (5.7 g medium h(-1)). Specific enzyme production in the DOT controlled fed-batch cultures was similar for all three strains (approx. 0.24 g alpha-amylase and glucoamylase [g of biomass](-1)), but one of the highly branched mutants made more total enzyme (24.3 +/- 0.2 g alpha-amylase and glucoamylase) than the parental strain (21.7 +/- 0.4 g alpha-amylase and glucoamylase).  相似文献   

11.
Arthrobacter sp. strain G1 is able to grow on 4-fluorocinnamic acid (4-FCA) as sole carbon source. The organism converts 4-FCA into 4-fluorobenzoic acid (4-FBA) and utilizes the two-carbon side-chain for growth with some formation of 4-fluoroacetophenone as a dead-end side product. We also have isolated Ralstonia sp. strain H1, an organism that degrades 4-FBA. A consortium of strains G1 and H1 degraded 4-FCA with Monod kinetics during growth in batch and continuous cultures. Specific growth rates of strain G1 and specific degradation rates of 4-FCA were observed to follow substrate inhibition kinetics, which could be modeled using the kinetic models of Haldane–Andrew and Luong–Levenspiel. The mixed culture showed complete mineralization of 4-FCA with quantitative release of fluoride, both in batch and continuous cultures. Steady-state chemostat cultures that were exposed to shock loadings of substrate responded with rapid degradation and returned to steady-state in 10–15 h, indicating that the mixed culture provided a robust system for continuous 4-FCA degradation.  相似文献   

12.
Bacterial cellulose production by fed-batch fermentation in molasses medium   总被引:2,自引:0,他引:2  
Bae S  Shoda M 《Biotechnology progress》2004,20(5):1366-1371
Batch and fed-batch fermentations for bacterial cellulose (BC) production using molasses as a carbon source by Acetobacter xylinum BPR2001 were carried out in a jar fermentor. For improvement of BC production, molasses was subjected to H2SO4-heat treatment. The maximum BC concentration by this treated molasses increased 76%, and the specific growth rate increased 2-fold compared with that by untreated molasses. In batch fermentation, when the initial sugar concentrations of H2SO4-heat-treated molasses were varied from 20 to 70 g/L, the highest value of maximum BC concentration of 5.3 g/L was observed at 20 g/L. BC production in intermittent fed-batch (IFB) fermentation was conducted referring to the data in batch fermentation, and the highest BC production of 7.82 g/L was obtained when 0.2 L of molasses medium was added five times. When continuous fed-batch (CFB) fermentations were conducted, maximum BC concentration was obtained with a feeding rate of 6.3 g-sugar/h, which was derived from the optimal IFB experiment.  相似文献   

13.
Defined minimal media conditions were used to assess and subsequently enhance the production of subtilisin by genetically characterized Bacillus subtilis strains. Subtilisin production was initiated by the exhaustion or limitation of ammonium in batch and fed-batch cultures. Expression of the subtilisin gene (aprE) was monitored with a chromosomal aprE::lacZ gene fusion. The beta-galactosidase production driven by this fusion reflected subtilisin accumulation in the culture medium. Subtilisin gene expression was temporally extended in sporulation-deficient strains (spoIIG), relative to co-genic sporogenous strains, resulting in enhanced subtilisin production. Ammonium exhaustion not only triggered subtilisin production in asporogenous spoIIG mutants but also shifted carbon metabolism from acetate production to acetate uptake and resulted in the formation of multiple septa in a significant fraction of the cell population. Fed-batch culture techniques, employing the spoIIG strain, were investigated as a means to further extend subtilisin production. The constant provision of ammonium resulted in linear growth, with doubling times of 11 and 36 h in each of two independent experiments. At the lower growth rate, the responses elicited (subtilisin production, glucose metabolism, and morphological changes) during the feeding regime closely approximated the ammonium starvation response, while at the higher growth rate a partial starvation response was observed.  相似文献   

14.
The production of lipids by oleaginous yeast and fungi becomes more important because these lipids can be used for biodiesel production. To understand the process of lipid production better, we developed a model for growth, lipid production and lipid turnover in submerged batch fermentation. This model describes three subsequent phases: exponential growth when both a C-source and an N-source are available, carbohydrate and lipid production when the N-source is exhausted and turnover of accumulated lipids when the C-source is exhausted. The model was validated with submerged batch cultures of the fungus Umbelopsis isabellina (formerly known as Mortierella isabellina) with two different initial C/N-ratios. Comparison with chemostat cultures with the same strain showed a significant difference in lipid production: in batch cultures, the initial specific lipid production rate was almost four times higher than in chemostat cultures but it decreased exponentially in time, while the maximum specific lipid production rate in chemostat cultures was independent of residence time. This indicates that different mechanisms for lipid production are active in batch and chemostat cultures. The model could also describe data for submerged batch cultures from literature well.  相似文献   

15.
Aerobic and anaerobic growth characteristics and acid production of a clinical and a reference laboratory strain of Candida albicans in 0.1 M, glucose or sucrose-supplemented batch cultures were examined for 72 h, at 37 degrees C. Both strains gave sigmoid growth curves, aerobically, and the pH dropped from 7.0 to 3.5 in 48 h. Candidal growth or acid production was not observed in submerged, anaerobic cultures. The specific growth rate (mu) of the clinical strain of Candida was significantly greater than the reference strain, in both sugar media. The major acidic component initiating and sustaining the pH drop appeared to be acetate, although formate, pyruvate and propionate were detected in varying proportions in glucose or sucrose cultures. These anionic, acidic metabolites of C. albicans, may play a role in the pathogenesis of mucosal candidoses such as chronic atrophic candidosis.  相似文献   

16.
Competition between different strains of Streptococcus cremoris   总被引:1,自引:0,他引:1  
Abstract Streptococcus cremoris strain HP was found to grow poorly on agar plates under aerobic conditions in comparison to several other strains of S. cremoris (Wg2, ML1, AM1, E8). This made it possible to determine the numbers of strain HP in mixed cultures with other strains under different culture conditions. None of the mixtures was stable in batch cultures as a result of differences in the maximum specific growth rate. In continuous culture under lactose limitation strain HP outcompeted strains E8 and ML1 at low dilution rates, but at high dilution rates and in batch culture the reverse was observed. This represents another example of crossing μ-s curves in anaerobic bacteria.  相似文献   

17.
Microalgae are a promising feedstock for biofuel production. Lipid content in microalgae could be enhanced under nutrient depletion. This work investigated the effect of the nutrient on lipid accumulation in Ankistrodesmus sp. culture. Batch cultures were carried out using fresh BG11 medium, and after the harvest, the medium was reused for the next culture; this method was repeated two times. The maximum lipid productivity of 29.75 mg L?1 day?1 was obtained from the culture with the second reuse medium. In continuous cultures, Ankistrodesmus sp. was cultured in both fresh and modified BG11 mediums. The modified BG11 medium was adjusted to resemble the content of the first reuse medium. As a comparison between batch and continuous cultures, it was proven that the productivity in the continuous culture was better than in the batch, where the achievable maximum biomass and lipid were 188.30 and 38.32 mg L?1 day?1. The maximum lipid content of 34.22% was obtained from the continuous culture at a dilution rate of 0.08 day?1, whereas the maximum saturated and unsaturated fatty acid productivities of 79.96 and 104.54 mg L?1 day?1 were obtained at a dilution rate of 0.16 day?1.  相似文献   

18.
A biofilter treating alkylbenzene vapors was characterized for its optimal running conditions and kinetic parame-ters. Kinetics of the continuous biofilter were compared to batch kinetic data obtained with biofilm samples as well as with defined microbial consortia and with pure culture isolates from the biofilter. Both bacteria and fungi were present in the bioreactor. Five strains were isolated. Two bacteria, Bacillus and Pseudomonas, were shown to be dominant, as well as a Trichosporon strain which could, however, hardly grow on alkylbenzenes in pure culture. The remaining two strains were most often overgrown by the other three organisms in liquid phase batch cultures μ max, KS, KI values and biodegradation rates were calculated and compared for the difterent mixed and pure cultures. Since filter bed acidification was observed during biofiltration studies reaching a pH of about 4, experiments were also undertaken to study the influence of pH on performance of the different cultures. Biodegradation and growth were possible in all cases, over the pH range 3.5–7.0 at appreciable rates, both with mixed cultures and with pure bacterial cultures. Under certain conditions, microbial activity was even observed in the presence of alkylbenzenes down to pH 2.5 with mixed cultures, which is quite unusual and explains the ability of the present biocatalyst to remove alkylbenzenes with high efficiency in biofilters under acidic conditions.  相似文献   

19.
Summary Mycelia of Streptomyces sp. T 59-235 and Streptomyces tendae Tü 901 (producing the antibiotics tylosin and nikkomycin, resp.) were immobilized in different carriers. With both organisms best antibiotic production was observed in calcium alginate gel.Influence of aeration, cell density and flow rate on antibiotic production was investigated in batch fermentation and in a continuous system (air-bubbled reactor).In batch fermentation, immobilization prolongued the production phase from 72 to 120 h (Streptomyces T 59-235) and from 72 to 96 h (S. tendae). The relative productivity of immobilized cells was 40 to 50% compared to that of free mycelia in both cases.In continuous tylosin fermentation highest production rate was observed in a medium nearly saturated with oxygen.Nikkomycin production by immobilized S. tendae could be maintained for longer than 350 h in a continuous system. The production rate depended on cell density and flow rate of the medium. The maximum specific productivity was 100% compared to that of free mycelium in batch culture.  相似文献   

20.
Production of Streptokinase in Continuous Culture   总被引:1,自引:0,他引:1       下载免费PDF全文
A method for continuous cultivation of a β-hemolytic streptococcus, strain H 64, is described. The production of cells and streptokinase at various dilution rates, pH, and temperature were studied in a complex medium supplied with excess glucose. At pH 7.0, productivity of cells and streptokinase, as well as the yield constant with respect to glucose, all increased with increasing dilution rate in the range of 0.1 to 0.5 hr-1. The production of streptokinase was found to be a function of both growth rate and cell concentration. Although higher concentrations of streptokinase were obtained in experiments with batch cultures, the production of streptokinase in continuous cultures was found to be 2.3 times higher. The possible industrial application of a continuous production method is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号