首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of disulfide bonds is an essential step in the folding of many glycoproteins and secretory proteins. Non-native disulfide bonds are often formed between incorrect cysteine residues, and thus the cell has dedicated a family of oxidoreductases that are thought to isomerize non-native bonds. For an oxidoreductase to be capable of performing isomerization or reduction reactions, it must be maintained in a reduced state. Here we show that most of the oxidoreductases are predominantly reduced in vivo. Following oxidative stress the oxidoreductases are quickly reduced, demonstrating that a robust reductive pathway is in place in mammalian cells. Using ERp57 as a model we show that the reductive pathway is cytosol-dependent and that the component responsible for the reduction of the oxidoreductases is the low molecular mass thiol glutathione. In addition, ERp57 is not reduced following oxidative stress when inhibitors of glutathione synthesis or glutathione reduction are added to cells. Glutathione directly reduces ERp57 at physiological concentrations in vitro, and biotinylated glutathione forms a mixed disulfide with ERp57 in microsomes. Our results demonstrate that glutathione plays a direct role in the isomerization of disulfide bonds by maintaining the mammalian oxidoreductases in a reduced state.  相似文献   

2.
Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli   总被引:1,自引:0,他引:1  
Disulfide bond formation is part of the folding pathway for many periplasmic and outer membrane proteins that contain structural disulfide bonds. In Escherichia coli, a broad variety of periplasmic protein thiol:disulfide oxidoreductases have been identified in recent years, which substantially contribute to this pathway. Like the well-known cytoplasmic thioredoxins and glutaredoxins, these periplasmic protein thiol:disulfide oxidoreductases contain the conserved C-X-X-C motif in their active site. Most of them have a domain that displays the thioredoxin-like fold. In contrast to the cytoplasmic system, which consists exclusively of reducing proteins, the periplasmic oxidoreductases have either an oxidising, a reducing or an isomerisation activity. Apart from understanding their physiological role, it is of interest to learn how these proteins interact with their target molecules and how they are recycled as electron donors or acceptors. This review reflects the recently made efforts to elucidate the sources of oxidising and reducing power in the periplasm as well as the different properties of certain periplasmic protein thiol:disulfide oxidoreductases of E. coli.  相似文献   

3.
In Escherichia coli, a family of periplasmic disulfide oxidoreductases catalyzes correct disulfide bond formation in periplasmic and secreted proteins. Despite the importance of native disulfide bonds in the folding and function of many proteins, a systematic investigation of the in vivo substrates of E. coli periplasmic disulfide oxidoreductases, including the well characterized oxidase DsbA, has not yet been performed. We combined a modified osmotic shock periplasmic extract and two-dimensional gel electrophoresis to identify substrates of the periplasmic oxidoreductases DsbA, DsbC, and DsbG. We found 10 cysteine-containing periplasmic proteins that are substrates of the disulfide oxidase DsbA, including PhoA and FlgI, previously established DsbA substrates. This technique did not detect any in vivo substrates of DsbG, but did identify two substrates of DsbC, RNase I and MepA. We confirmed that RNase I is a substrate of DsbC both in vivo and in vitro. This is the first time that DsbC has been shown to affect the in vivo function of a native E. coli protein, and the results strongly suggest that DsbC acts as a disulfide isomerase in vivo. We also demonstrate that DsbC, but not DsbG, is critical for the in vivo activity of RNase I, indicating that DsbC and DsbG do not function identically in vivo. The absence of substrates for DsbG suggests either that the in vivo substrate specificity of DsbG is more limited than that of DsbC or that DsbG is not active under the growth conditions tested. Our work represents one of the first times the in vivo substrate specificity of a folding catalyst system has been systematically investigated. Because our methodology is based on the simple assumption that the absence of a folding catalyst should cause its substrates to be present at decreased steady-state levels, this technique should be useful in analyzing the substrate specificity of any folding catalyst or chaperone for which mutations are available.  相似文献   

4.
Selenium has significant health benefits, including potent cancer prevention activity and roles in immune function and the male reproductive system. Selenium-containing proteins, which incorporate this essential micronutrient as selenocysteine, are proposed to mediate the positive effects of dietary selenium. Presented here are the solution NMR structures of the selenoprotein SelM and an ortholog of the selenoprotein Sep15. These data reveal that Sep15 and SelM are structural homologs that establish a new thioredoxin-like protein family. The location of the active-site redox motifs within the fold together with the observed localized conformational changes after thiol-disulfide exchange and measured redox potential indicate that they have redox activity. In mammals, Sep15 expression is regulated by dietary selenium, and either decreased or increased expression of this selenoprotein alters redox homeostasis. A physiological role for Sep15 and SelM as thiol-disulfide oxidoreductases and their contribution to the quality control pathways of the endoplasmic reticulum are discussed.  相似文献   

5.
Bacillus subtilis is an endospore-forming bacterium. There are indications that protein disulfide linkages occur in spores, but the role of thiol-disulfide chemistry in spore synthesis is not understood. Thiol-disulfide oxidoreductases catalyze formation or breakage of disulfide bonds in proteins. CcdA is the only B. subtilis thiol-disulfide oxidoreductase that has previously been shown to play some role in endospore biogenesis. In this work we show that lack of the StoA (YkvV) protein results in spores sensitive to heat, lysozyme, and chloroform. Compared to CcdA deficiency, StoA deficiency results in a 100-fold-stronger negative effect on sporulation efficiency. StoA is a membrane-bound protein with a predicted thioredoxin-like domain probably localized in the intermembrane space of the forespore. Electron microscopy of spores of CcdA- and StoA-deficient strains showed that the spore cortex is absent in both cases. The BdbD protein catalyzes formation of disulfide bonds in proteins on the outer side of the cytoplasmic membrane but is not required for sporulation. Inactivation of bdbD was found to suppress the sporulation defect of a strain deficient in StoA. Our results indicate that StoA is a thiol-disulfide oxidoreductase that is involved in breaking disulfide bonds in cortex components or in proteins important for cortex synthesis.  相似文献   

6.
A potential role in disulfide bond formation in the intracellular proteins of thermophilic organisms has recently been ascribed to a new family of protein disulfide oxidoreductases (PDOs). We report on the characterization of SsPDO, isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. SsPDO was cloned and expressed in Escherichia coli. We revealed that SsPDO is the substrate of a thioredoxin reductase in S. solfataricus (K(M) 0.3 microm) and not thioredoxins (TrxA1 and TrxA2). SsPDO/S. solfataricus thioredoxin reductase constitute a new thioredoxin system in aerobic thermophilic archaea. While redox (reductase, oxidative and isomerase) activities of SsPDO point to its central role in the biochemistry of cytoplasmic disulfide bonds, chaperone activities also on an endogenous substrate suggest a potential role in the stabilization of intracellular proteins. Northern and western analysis have been performed in order to analyze the response to the oxidative stress.  相似文献   

7.
Identification of a protein required for disulfide bond formation in vivo   总被引:89,自引:0,他引:89  
J C Bardwell  K McGovern  J Beckwith 《Cell》1991,67(3):581-589
We describe a mutation (dsbA) that renders Escherichia coli severely defective in disulfide bond formation. In dsbA mutant cells, pulse-labeled beta-lactamase, alkaline phosphatase, and OmpA are secreted but largely lack disulfide bonds. These disulfideless proteins may represent in vivo folding intermediates, since they are protease sensitive and chase slowly into stable oxidized forms. The dsbA gene codes for a 21,000 Mr periplasmic protein containing the sequence cys-pro-his-cys, which resembles the active sites of certain disulfide oxidoreductases. The purified DsbA protein is capable of reducing the disulfide bonds of insulin, an activity that it shares with these disulfide oxidoreductases. Our results suggest that disulfide bond formation is facilitated by DsbA in vivo.  相似文献   

8.
Disulfide bonds are important for the stability and function of many secreted proteins. In Gram-negative bacteria, these linkages are catalyzed by thiol-disulfide oxidoreductases (Dsb) in the periplasm. Protein oxidation has been well studied in these organisms, but it has not fully been explored in Gram-positive bacteria, which lack traditional periplasmic compartments. Recent bioinformatics analyses have suggested that the high-GC-content bacteria (i.e., actinobacteria) rely on disulfide-bond-forming pathways. In support of this, Dsb-like proteins have been identified in Mycobacterium tuberculosis, but their functions are not known. Actinomyces oris and Corynebacterium diphtheriae have recently emerged as models to study disulfide bond formation in actinobacteria. In both organisms, disulfide bonds are catalyzed by the membrane-bound oxidoreductase MdbA. Remarkably, unlike known Dsb proteins, MdbA is important for pathogenesis and growth, which makes it a potential target for new antibacterial drugs. This review will discuss disulfide-bond-forming pathways in bacteria, with a special focus on Gram-positive bacteria.  相似文献   

9.
Thiol-disulfide oxidoreductases are required for disulfide bond formation in proteins that are exported from the cytoplasm. Four enzymes of this type, termed BdbA, BdbB, BdbC, and BdbD, have been identified in the Gram-positive eubacterium Bacillus subtilis. BdbC and BdbD have been shown to be critical for the folding of a protein required for DNA uptake during natural competence. In contrast, no function has been assigned so far to the BdbA and BdbB proteins. The bdbA and bdbB genes are located in one operon that also contains the genes specifying the lantibiotic sublancin 168 and the ATP-binding cassette transporter SunT. Interestingly sublancin 168 contains two disulfide bonds. The present studies demonstrate that SunT and BdbB, but not BdbA, are required for the production of active sublancin 168. In addition, the BdbB paralogue BdbC is at least partly able to replace BdbB in sublancin 168 production. These observations show the unprecedented involvement of thiol-disulfide oxidoreductases in the synthesis of a peptide antibiotic. Notably BdbB cannot complement BdbC in competence development, showing that these two closely related thiol-disulfide oxidoreductases have different, but partly overlapping, substrate specificities.  相似文献   

10.
The in vivo formation of disulfide bonds, which is critical for the stability and/or activity of many proteins, is catalyzed by thiol-disulfide oxidoreductases. In the present studies, we show that the Gram-positive eubacterium Bacillus subtilis contains three genes, denoted bdbA, bdbB, and bdbC, for thiol-disulfide oxidoreductases. Escherichia coli alkaline phosphatase, containing two disulfide bonds, was unstable when secreted by B. subtilis cells lacking BdbB or BdbC, and notably, the expression levels of bdbB and bdbC appeared to set a limit for the secretion of active alkaline phosphatase. Cells lacking BdbC also showed decreased stability of cell-associated forms of E. coli TEM-beta-lactamase, containing one disulfide bond. In contrast, BdbA was not required for the stability of alkaline phosphatase or beta-lactamase. Because BdbB and BdbC are typical membrane proteins, our findings suggest that they promote protein folding at the membrane-cell wall interface. Interestingly, pre-beta-lactamase processing to its mature form was stimulated in cells lacking BdbC, suggesting that the unfolded form of this precursor is a preferred substrate for signal peptidase. Surprisingly, cells lacking BdbC did not develop competence for DNA uptake, indicating the involvement of disulfide bond-containing proteins in this process. Unlike E. coli and yeast, none of the thiol-disulfide oxidoreductases of B. subtilis was required for growth in the presence of reducing agents. In conclusion, our observations indicate that BdbB and BdbC have a general role in disulfide bond formation, whereas BdbA may be dedicated to a specific process.  相似文献   

11.
Protein secretion from the endoplasmic reticulum (ER) requires the enzymatic activity of chaperones and oxidoreductases that fold polypeptides and form disulfide bonds within newly synthesized proteins. The best-characterized ER redox relay depends on the transfer of oxidizing equivalents from molecular oxygen through ER oxidoreductin 1 (Ero1) and protein disulfide isomerase to nascent polypeptides. The formation of disulfide bonds is, however, not the sole function of ER oxidoreductases, which are also important regulators of ER calcium homeostasis. Given the role of human Ero1α in the regulation of the calcium release by inositol 1,4,5-trisphosphate receptors during the onset of apoptosis, we hypothesized that Ero1α may have a redox-sensitive localization to specific domains of the ER. Our results show that within the ER, Ero1α is almost exclusively found on the mitochondria-associated membrane (MAM). The localization of Ero1α on the MAM is dependent on oxidizing conditions within the ER. Chemical reduction of the ER environment, but not ER stress in general leads to release of Ero1α from the MAM. In addition, the correct localization of Ero1α to the MAM also requires normoxic conditions, but not ongoing oxidative phosphorylation.  相似文献   

12.
秦童  黄震 《植物学报》2019,54(1):119-132
硫氧还蛋白(Trx)属于巯基-二硫键氧化还原酶家族, 通过作用于底物蛋白侧链2个半胱氨酸残基之间的二硫键(还原、异构和转移)来调控胞内蛋白的结构和功能。叶绿体Trx系统包括Trx及Trx类似蛋白、铁氧还蛋白(Fd)依赖的硫氧还蛋白还原酶(FTR)和还原型烟酰腺嘌呤二核苷磷酸(NADPH)依赖的硫氧还蛋白还原酶C (NTRC)。除了基质蛋白酶类活性变化及叶绿体蛋白的转运受Trx系统调控之外, 在叶绿体中还存在1条跨类囊体膜的还原势传递途径, 把基质Trx的还原势经跨膜转运蛋白介导, 最终传递给类囊体腔蛋白。FTR和NTRC共同作用维持叶绿体的氧化还原平衡。该文对叶绿体硫氧还蛋白系统的调节机制进行了综述, 同时讨论了叶绿体硫氧还蛋白系统对维持植物光合效率的重要意义。  相似文献   

13.
大肠杆菌分泌蛋白二硫键的形成是一系列蛋白协同作用的结果,主要是Dsb家族蛋白,迄今为止共发现了DsbA、DsbB、DsbC、DsbD、DsbE和DsbG。在体内,DsbA负责氧化两个巯基形成二硫键,DsbB则负责DsbA的再氧化。DsbC和DsbG负责校正DsbA导入的异常二硫键,DsbD则负责对DsbC和DsbG进行再还原,DsbE的功能与DsbD类似。除了直接和二硫键的形成相关外,DsbA、DsbC和DsbG都有分子伴侣功能。它们的分子伴侣功能独立于二硫键形成酶的活性并且对二硫键形成酶活性具有明显的促进作用。基于Dsb蛋白的功能特性,利用它们以大肠杆菌为宿主表达外源蛋白,特别是含有二硫键的蛋白,取得了很多成功的例子。本文简要介绍了这方面的进展,显示Dsb蛋白在促进外源蛋白在大肠杆菌中以可溶形式表达方面具有广阔的应用前景。  相似文献   

14.
In the endoplasmic reticulum (ER), a variety of oxidoreductases classified in the thioredoxin superfamily have been found to catalyze the formation and rearrangement of disulfide bonds. However, the precise function and specificity of the individual thioredoxin family proteins remain to be elucidated. Here, we characterize a transmembrane thioredoxin-related protein (TMX), a membrane-bound oxidoreductase in the ER. TMX exists in a predominantly reduced form and associates with the molecular chaperon calnexin, which can mediate substrate binding. To determine the target molecules for TMX, we apply a substrate-trapping approach based on the reaction mechanism of thiol-disulfide exchange, identifying major histocompatibility complex (MHC) class I heavy chain (HC) as a candidate substrate. Unlike the classical ER oxidoreductases such as protein disulfide isomerase and ERp57, TMX seems not to be essential for normal assembly of MHC class I molecules. However, we show that TMX–class I HC interaction is enhanced during tunicamycin-induced ER stress, and TMX prevents the ER-to-cytosol retrotranslocation of misfolded class I HC targeted for proteasomal degradation. These results suggest a specific role for TMX and its mechanism of action in redox-based ER quality control.  相似文献   

15.
The Erv flavoenzymes contain a compact module that catalyzes the pairing of cysteine thiols into disulfide bonds. High-resolution structures of plant, animal, and fungal Erv enzymes that function in different contexts and intracellular compartments have been determined. Structural features can be correlated with biochemical properties, revealing how core sulfhydryl oxidase activity has been tailored to various functional niches. The introduction of disulfides into cysteine-containing substrates by Erv sulfhydryl oxidases is compared with the mechanisms used by NADPH-driven disulfide reductases and thioredoxin-like oxidoreductases to reduce and transfer disulfides, respectively.  相似文献   

16.
The increased insight into the mechanism of bacterial protein translocation has resulted in new concepts for the production of heterologous proteins. The periplasm of gram-negative bacteria is revealed to have a role as a 'protein construction compartment', which can be used to fold complex proteins. Passage across the outer membrane, however, remains a challenge due to the high selectivity of the outer membrane translocase. In gram-positive bacteria, slow folding at the membrane-cell-wall interface can make heterologous proteins vulnerable to degradation by wall-associated proteases. The recent identification of thiol-disulfide oxidoreductases in Bacillus subtilis might open the possibility of secreting proteins containing multiple disulfide bonds from this host.  相似文献   

17.
There is no doubt as to the important role that free radicals and reactive oxygen species play in the cell. Disturbances in intracellular redox proteins are often accompanied by common pathologies, including diabetes, myocardial infarction, neurodegeneration, bronchopulmonary diseases, cancer, etc. Numerous antioxidant enzymes are related to various redox biology systems, the thiol oxidoreductase superfamily playing a key role. The superfamily includes thioredoxin, glutaredoxin, peroxiredoxin, protein disulfide isomerase, and glutathione peroxidase families and a number of other proteins. Apart from their antioxidant function, thiol oxidoreductases are capable of recycling hydroperoxyde to produce specific disulfide bonds within and between proteins, which significantly expands their functional range. In view of this, it is a topical problem of redox biology to characterize the superfamily members biochemically and to study their functional mechanisms.  相似文献   

18.
When brain-derived neurotrophic factor (BDNF) is produced in the Escherichia coli periplasm, insoluble BDNF proteins with low biological activity and having mismatched disulfide linkages are formed. The coexpression of cysteine oxidoreductases (DsbA and DsbC) and membrane-bound enzymes (DsbB and DsbD), which play an important role in the formation of disulfide bonds in the periplasm, was investigated to improve the production of soluble and biologically active BDNF. The expression levels of Dsb proteins changed when the growth medium and the Dsb expression plasmids were changed, and the production rate of soluble BDNF was almost proportional to the expression level of DsbC protein with disulfide isomerase activity in the case of a low expression level of BDNF. The rate of soluble BDNF production with coexpression of DsbABCD was as high as 35%. These results show that coexpression of BDNF and Dsb proteins can effectively increase the production of soluble and biologically active BDNF.  相似文献   

19.
Allosteric disulfide bonds   总被引:5,自引:0,他引:5  
Schmidt B  Ho L  Hogg PJ 《Biochemistry》2006,45(24):7429-7433
Disulfide bonds have been generally considered to be either structural or catalytic. Structural bonds stabilize a protein, while catalytic bonds mediate thiol-disulfide interchange reactions in substrate proteins. There is emerging evidence for a third type of disulfide bond that can control protein function by triggering a conformational change when it breaks and/or forms. These bonds can be thought of as allosteric disulfides. To better define the properties of allosteric disulfides, we have analyzed the geometry and dihedral strain of 6874 unique disulfide bonds in 2776 X-ray structures. A total of 20 types of disulfide bonds were identified in the dataset based on the sign of the five chi angles that make up the bond. The known allosteric disulfides were all contained in 1 of the 20 groups, the -RHStaple bonds. This bond group has a high mean potential energy and narrow energy distribution, which is consistent with a functional role. We suggest that the -RHStaple configuration is a hallmark of allosteric disulfides. About 1 in 15 of all structurally determined disulfides is a potential allosteric bond.  相似文献   

20.
Lipoprotein lipase (LPL) is a secreted lipase that clears triglycerides from the blood. Proper LPL folding and exit from the endoplasmic reticulum (ER) require lipase maturation factor 1 (LMF1), an ER‐resident transmembrane protein, but the mechanism involved is unknown. We used proteomics to identify LMF1‐binding partners necessary for LPL secretion in HEK293 cells and found these to include oxidoreductases and lectin chaperones, suggesting that LMF1 facilitates the formation of LPL's five disulfide bonds. In accordance with this role, we found that LPL aggregates in LMF1‐deficient cells due to the formation of incorrect intermolecular disulfide bonds. Cells lacking LMF1 were hypersensitive to depletion of glutathione, but not DTT treatment, suggesting that LMF1 helps reduce the ER. Accordingly, we found that loss of LMF1 results in a more oxidized ER. Our data show that LMF1 has a broader role than simply folding lipases, and we identified fibronectin and the low‐density lipoprotein receptor (LDLR) as novel LMF1 clients that contain multiple, non‐sequential disulfide bonds. We conclude that LMF1 is needed for secretion of some ER client proteins that require reduction of non‐native disulfides during their folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号