首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Indigo and indirubin have been reported to be present at low levels in human urine. The possibility that indigoids are physiological ligands of the aryl hydrocarbon receptor (AhR) has been suggested by initial studies in yeast, where indirubin was found to be 50 times more potent than 2,3,7,8-tetrachlorodibenzo[p]dioxin (TCDD), and indigo was found to be equipotent. To demonstrate that these indigoids are bona fide agonists in mammalian systems, we employed a number of in vitro and in vivo measures of AhR agonist potency. In a hepatoma cell reporter system, indigo yielded an EC50 of approximately 5x10(-6)M (indirubin 3' -oxime EC50 approximately 5x10(-7)M, indirubin EC50 approximately 1x10(-7)M). A comparison of these EC50 values with that of 2,3,7,8-tetrachlorodibenzofuran (TCDBF) ( approximately 3x10(-9)M) indicated that these compounds are less potent than classic halogenated-dibenzofurans or -dibenzo-p-dioxins. Competitive binding assays for AhR occupancy showed similar IC50 values for indirubin and TCDBF ( approximately 2x10(-9) and 5x10(-9)M), with the IC50 values of indigo and indirubin 3' -oxime being approximately 10-fold higher. When rats were treated with these indigoids in the range of 1.5-50mg/kg, induction of hepatic cytochrome P450 1A1 was detected. Differences in the rank-order of potency observed in vivo and in vitro could, in part, be explained by metabolism. Although their biological potencies are not as high as has been previously suggested, collectively the results show that these indole-derived pigments are agonists of AhR in vivo. The in vivo results suggest that solubility, distribution, and metabolism influence the response to the compounds.  相似文献   

2.
Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the Ki value of 28.4 ± 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.  相似文献   

3.
4.
5.
Indirubin and indigo, which are thought to be natural ligands for aryl hydrocarbon receptor (AhR), showed marked AhR ligand activities in a reporter gene assay using recombinant yeast. Their activities were comparable with or more potent than that of 2,3,7,8-tetrachlorodibenzo-p-dioxin. When indirubin and indigo were administered to mice, ethoxyresorufin-O-dealkylase and methoxyresorufin-O-dealkylase activities in the liver were increased, but subsequently decreased within 2 days. Indirubin was more potent than indigo. Levels of cytochrome P450 1A1/2 proteins and mRNAs in the liver of mice dosed with indirubin were also enhanced. These enhancing effects of indirubin and indigo were not observed in AhR knock-out mice. Ethoxyresorufin-O-dealkylase and methoxyresorufin-O-dealkylase activities in rat hepatocytes and HepG2 cells were enhanced by the addition of indirubin or indigo, but less potently than by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Indigocarmine, a sulfate derivative of indigo, which is used as food additive, did not show these inducing effects on drug-metabolizing enzymes. Our results suggest that indirubin and indigo act as inducers for cytochrome P450 1A1/2 mediated by AhR in mammals in vivo.  相似文献   

6.
7.
8.
The arylhydrocarbon receptor (AhR) mediates toxicities of dioxins, including the most potent congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), by being translocated to the nucleus upon ligand-binding and inducing expression of target genes. Although the species-specific activity of the AhR is primarily attributable to species-specific AhR-ligand affinity, the precise mechanism has not been clarified. We investigated the modulation mechanisms of AhR in Hepa1c1c7 and HepG2 hepatoma cells, which were derived from high-affinity-AhR-expressing C57BL/6 mice and low-affinity-AhR-expressing humans, respectively. Although, consistent with their AhR affinities, TCDD induced a greater amount of cytochrome P450 1A1 (CYP1A1) mRNA, one of the most sensitive AhR-targets, in Hepa1c1c7 cells than in HepG2 cells immediately after exposure, both cells expressed a similar level of CYP1A1 mRNA from 4 h onward. A rapid decrease in the AhR protein after nuclear translocation in Hepa1c1c7 cells was suggested to contribute to suppression of CYP1A1 induction to the same level as in HepG2 cells. Different profiles of histone deacetylase 1 (HDAC1)-binding to the CYP1A1 promoter and histone acetylation between both cell lines and lower degradation rate of CYP1A1 mRNA in HepG2 cells were also implicated in regulating their target gene expression. These factors have been highly suggested to be involved in the species-specific modulation mechanism of AhR function.  相似文献   

9.
10.
Elevated expression of cytochrome P450 1B1 (CYP1B1) and estradiol 4-hydroxylation have been reported to be biomarkers of tumorigenesis in humans. The aromatic hydrocarbon receptor (AhR) regulates expression of human cytochrome P450 1A1 (CYP1A1) and CYP1B1, 17β-estradiol (E2) 2- and 4-hydroxylases, respectively. There is also evidence that expression of estrogen receptor α (ERα) potentiates CYP1A1 inducibility in breast cancer cells. To characterize these relationships further, we examined the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA), which downregulates ERα, and the high-affinity AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on the expression of AhR, ERα, CYP1A1, and CYP1B1 in MCF-7 human breast cancer cells. Treatment with TPA, which suppressed ERα mRNA levels, caused a greater than fourfold elevation of AhR mRNA and protein levels, whereas treatment with TCDD caused a decrease in AhR protein but no change in ERα or AhR mRNA levels. In MCF-7 cells treated with TPA prior to treatment with TCDD, the AhR mRNA level was elevated, the ERα mRNA level remained suppressed, and the ratio of CYP1B1 to CYP1A1 mRNA was increased compared with treatment with TCDD alone. A corresponding increase in the ratio of the rates of 4- to 2-hydroxylation pathways of E2 metabolism was also observed in response to pretreatment with TPA prior to the addition of TCDD. These results demonstrate differential regulation of the human CYP1A1 and CYP1B1 genes and provide a cellular model to investigate further the mechanisms that may be involved in the elevated expression of CYP1B1 in tumorigenesis. J. Cell. Biochem. 70:289–296, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
12.
13.
Azole antifungal ketoconazole (KET) was demonstrated to activate aryl hydrocarbon receptor (AhR). Since clinically used KET is a racemic mixture of two cis-enantiomers (2R,4S)-(+)-KET and (2S,4R)-(−)-KET, we examined the effects of KET enantiomers on AhR signaling pathway. (+)-KET dose-dependently activated AhR in human gene reporter cell line AZ-AHR, and displayed 5–20× higher agonist activity (efficacy), as compared to (−)-KET; both enantiomers were AhR antagonists with equal potency (IC50). Consistently, (+)-KET strongly induced CYP1A1 mRNA and protein in human HepG2 cells, while (−)-KET exerted less than 10% of (+)-KET activity. In primary human hepatocytes, both enantiomers preferentially induced CYP1A2 over CYP1A1 mRNA and protein, and the potency of (+)-KET was slightly higher as compared to (−)-KET. Ligand binding assay with guinea pig liver cytosols revealed that both (+)-KET and (−)-KET are weak ligands of AhR that displaced [3H]-TCDD with comparable potency. Similarly, both enantiomers weakly transformed AhR to DNA-binding form with similar potency, as showed by EMSA, in guinea pig liver cytosolic extracts and nuclear extracts from mouse Hepa-1 cells. We also examined effects of KET on glucocorticoid receptor (GR), a regulator of AhR activity. Both KET enantiomers antagonized GR with similar potency, as revealed by gene reporter assay in AZ-GR cell line and down-regulation of tyrosine aminotransferase mRNA in human hepatocytes. Finally, we demonstrate enantiospecific antifungal activities of KET enantiomers in six Candida spp. strains. In conclusion, the significance of current study is providing the first evidence of enatiospecific effects of cis-enantiomers of ketoconazole on AhR-CYP1A pathway.  相似文献   

14.
Abstract

Certain dioxins, including 2,3,7,8,-tetrachloro-dibenzo-p-dioxin (TCDD), are exogenous ligands for an aryl hydrocarbon receptor (AhR) and induces various drug-metabolizing enzymes. In this study, we examined the effect of curcumin on expression of drug-metabolizing enzymes through the AhR and NF-E2 related factor 2 (Nrf2) pathways. Curcumin dose-dependently inhibited TCDD-induced expression of phase I enzyme cytochrome P450 1A1 (CYP1A1) and phase II enzymes NAD(P)H:quinone oxidoreductase-1 (NQO1) and heme oxygenase 1 (HO-1) but not tert-butyl hydroquinone-induced NQO1 and HO-1, suggesting that curcumin inhibited only AhR pathway, but not Nrf2 one directly. Furthermore, we used 14 curcumin derivatives and obtained the correlation between hydrophobicity of the compounds and suppressive effect against AhR transformation. Results from the quantitative structure active correlative analysis indicated that methoxy groups and β-diketone structure possessing keto-enol tautomerism in curcumin were necessary to inhibit AhR transformation, and the addition of methyl and methoxy group(s) to the curcumin increased the inhibition effect.  相似文献   

15.
16.
Dioxins induce adverse effects through transformation of the cytosolic aryl hydrocarbon receptor (AhR). Our previous study found that flavones and flavonols at dietary levels suppress AhR transformation. In the present study, we investigated whether 20 anthocyans dissolved in trifluoroacetic acid (TFA)-MeOH suppressed AhR transformation in a cell-free system and in Hepa-1c1c7 cells. Although four compounds at 50 muM suppressed 0.1 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced AhR transformation and their effects were dose-dependent in the cell-free system, they were ineffective at 0.5 muM, which is close to physiological concentration. Moreover, no anthocyan at 50 muM tested here suppressed 0.1 nM TCDD-induced AhR transformation in Hepa-1c1c7 cells. We also confirmed that protocatechuic acid and related compounds, which are possible metabolites of anthocyans, did not affect the transformation in the cell-free system. It is concluded that anthocyans are not suitable candidates for protection from dioxin toxicity.  相似文献   

17.
18.
19.
Halogenated and polycyclic aromatic hydrocarbons induce diverse biochemical responses through the transformation of a cytosolic aryl hydrocarbon receptor (AhR). In mouse hepatoma Hepa-1c1c7 cells, curcumin, a yellow pigment of Curcuma longa, did not inhibit the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced translocation of the AhR into the nucleus, but rather accelerated it. In the nucleus, curcumin inhibited the TCDD-induced heterodimerization of the AhR with an AhR nuclear translocator (Arnt), an essential partner for the transformation, and also dose-dependently inhibited the TCDD-evoked phosphorylation of both the AhR and Arnt. Moreover, curcumin significantly inhibited the TCDD-induced activation of protein kinase C (PKC), which is involved in the transformation, decreased the TCDD-induced DNA-binding activity of the AhR/Arnt heterodimer, and downregulated CYP1A1 expression. In a cell-free system, curcumin inhibited the binding of 3-methylcholanthrene, an AhR agonist, to the receptor. These results indicate that curcumin is able to bind to the AhR as a ligand, but suppresses its transformation by inhibiting the phosphorylation of AhR and Arnt, probably by PKC.  相似文献   

20.
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin induces developmental toxicity in reproductive organs. To elucidate the function of AhR, we generated stable transformants of TM3 cells overexpressing wild-type aryl hydrocarbon receptor (AhR) or its mutants which carried mutations in nuclear localization signal or nuclear export signal. In the presence of 3-methylcholanthrene (MC), proliferation of the cells transfected with wild-type AhR was completely suppressed, whereas cells expressing AhR mutants proliferated in a manner equivalent to control TM3 cells, suggesting AhR-dependent growth inhibition. The suppression was associated with up-regulation of cyclin-dependent kinase inhibitor p21Cip1, which was abolished by pretreatment with actinomycin D. A p38 MAPK specific inhibitor, SB203580, blocked the increase of p21Cip1 mRNA in response to MC. Treatment with indigo, another AhR ligand, failed to increase of p21Cip1 mRNA, although up-regulation of mRNA for CYP1A1 was observed. These data suggest AhR in Leydig cells mediates growth inhibition by inducing p21Cip1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号