首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β2-Adrenergic receptor (β2AR) plays a critical role in mediating the effects of catecholamine hormones. Due to the flexibility of the structure of its active state, study of agonist–β2AR is usually performed by molecular dynamic (MD) simulation. In this study we show the representative characteristics of agonist binding and activation on β2AR by MD simulation. The binding site and the conformational changes in the specific regions of β2AR are reasonable which confirmed the conclusion that agonist–β2AR reached its active-like state. We have studied the disruption of non-covalent intramolecular interactions, including the conserved DRY motif, the rotamer toggle switch and the ionic lock, the cytoplasmic ends of transmembranes 5 and 6, and some water-mediated hydrogen bond network regions. We conclude that agonist induced β2AR to its active conformation, or at least the active-like conformation.  相似文献   

2.
We present a homology based model of the ligand binding domain (LBD) of the homopentameric alpha1 glycine receptor (GlyR). The model is based on multiple sequence alignment with other members of the nicotinicoid ligand gated ion channel superfamily and two homologous acetylcholine binding proteins (AChBP) from the freshwater (Lymnaea stagnalis) and saltwater (Aplysia californica) snails with known high resolution structure. Using two template proteins with known structure to model three dimensional structure of a target protein is especially advantageous for sequences with low homology as in the case presented in this paper. The final model was cross-validated by critical evaluation of experimental and published mutagenesis, functional and other biochemical studies. In addition, a complex structure with strychnine antagonist in the putative binding site is proposed based on docking simulation using Autodock program. Molecular dynamics (MD) simulations with simulated annealing protocol are reported on the proposed LBD of GlyR, which is stable in 5 ns simulation in water, as well as for a deformed LBD structure modeled on the corresponding domain determined in low-resolution cryomicroscopy structure of the alpha subunit of the full-length acetylcholine receptor (AChR). Our simulations demonstrate that the beta-sandwich central core of the protein monomer is fairly rigid in the simulations and resistant to deformations in water.  相似文献   

3.
In this study, by homology modelling and molecular dynamics (MD) simulation, models of l-stepholidine (l-SPD) activating the 5-HT1A and D1 receptors were constructed. In 100-ns MD simulations, the D1 and 5-HT1A receptors were activated by the partial agonist l-SPD, conforming with the global toggle switch activation model and the sequential activation model. The residues Y7.53 and Y5.58 swing significantly between different transmembrane (TM) domains after activation. Similarities between D1 and 5-HT1A included (1) the outward motion of TM-5; (2) the ionic lock was independent of the tilt of TM-6 and (3) there was an apparent bending of TM-6, and the ring of l-SPD formed strong π–π interactions with residue W6.48. Differences between the two included the following: (1) in 5-HT1A, l-SPD formed a hydrogen bond with Ala1725.46 of TM-5, and the intracellular end of TM-5 moved outward slowly; that hydrogen bond did not form with the D1 receptor; (2) l-SPD formed stronger interactions with D3.32 and W6.48 in the D1 receptor than in the 5-HT1A receptor and (3) the hydrogen bonding network was somewhat different in SPD-5-HT1A and SPD-D1 receptors. We propose the interaction between l-SPD and D3.32 or/and W6.48 is the original driving force during the whole activation process.  相似文献   

4.
Molecular dynamics (MD) simulations were used to investigate the binding of four ligands to the Val122Ile mutant of the protein transthyretin. Dissociation, misfolding, and subsequent aggregation of mutated transthyretin proteins are associated with the disease Familial Amyloidal Cardiomyopathy. The ligands investigated were the drug candidate AG10 and its decarboxy and N-methyl derivatives along with the drug tafamidis. These ligands bound to the receptor in two halogen binding pockets (HBP) designated AB and A’B’. Inter-ligand distances, solvent accessible surface areas, root mean squared deviation measurements, and extracted structures showed very little change in the AG10 ligands' conformations or locations within the HBP during the MD simulation. In addition, the AG10 ligands experienced stable, two-point interactions with the protein by forming hydrogen bonds with Ser-117 residues in both the AB and A’B’ binding pockets and Lysine-15 residues found near the surface of the receptor. Distance measurements showed these H-bonds formed simultaneously during the MD simulation. Removal of the AG10 carboxylate functional group to form decarboxy-AG10 disrupted this two-point interaction causing the ligand in the AB pocket to undergo a conformational change during the MD simulation. Likewise, addition of a methyl group to the AG10 hydrazone functional group also disrupted the two-point interaction by decreasing hydrogen bonding interactions with the receptor. Finally, MD simulations showed that the tafamidis ligands experienced fewer hydrogen bonding interactions than AG10 with the protein receptor. The tafamidis ligand in pocket A’B’ was also found to move deeper into the HBP during the MD simulation.  相似文献   

5.
It has been long experimentally demonstrated that human alpha-fetoprotein (HAFP) has an ability to bind immobilized estrogens with the most efficiency for synthetic estrogen analog - diethylstilbestrol (DES). However, the question remains why the human AFP (HAFP), unlike rodent AFP, cannot bind free estrogens. Moreover, despite the fact that AFP was first discovered more than 50 years ago and is presently recognized as a "golden standard" among onco-biomarkers, its three-dimensional (3D) structure has not been experimentally solved yet. In this work using MODELLER program, we generated 3D model of HAFP on the basis of homology with human serum albumin (HSA) and Vitamin D-binding protein (VTDB) with subsequent molecular docking of DES to the model structure and molecular dynamics (MD) simulation study of the complex obtained. The model constructed has U-shaped structure in which a cavity may be distinguished. In this cavity the putative estrogen-binding site is localized. Validation by RMSD calculation and with the use of PROCHECK program showed good quality of the model and stability of extended region of four alpha-helical structures that contains putative hormone-binding residues. Data extracted from MD simulation trajectory allow proposing two types of interactions between amino acid residues of HAFP and DES molecule: (1) hydrogen bonding with involvement of residues S445, R452, and E551; (2) hydrophobic interactions with participation of L138, M448, and M548 residues. A suggestion is made that immobilization of the hormone using a long spacer provides delivery of the estrogen molecule to the binding site and, thereby, facilitates interaction between HAFP and the hormone.  相似文献   

6.
The determination of G protein-coupled receptor (GPCR) structures at atomic resolution has improved understanding of cellular signaling and will accelerate the development of new drug candidates. However, experimental structures still remain unavailable for a majority of the GPCR family. GPCR structures and their interactions with ligands can also be modelled computationally, but such predictions have limited accuracy. In this work, we explored if molecular dynamics (MD) simulations could be used to refine the accuracy of in silico models of receptor-ligand complexes that were submitted to a community-wide assessment of GPCR structure prediction (GPCR Dock). Two simulation protocols were used to refine 30 models of the D3 dopamine receptor (D3R) in complex with an antagonist. Close to 60 μs of simulation time was generated and the resulting MD refined models were compared to a D3R crystal structure. In the MD simulations, the receptor models generally drifted further away from the crystal structure conformation. However, MD refinement was able to improve the accuracy of the ligand binding mode. The best refinement protocol improved agreement with the experimentally observed ligand binding mode for a majority of the models. Receptor structures with improved virtual screening performance, which was assessed by molecular docking of ligands and decoys, could also be identified among the MD refined models. Application of weak restraints to the transmembrane helixes in the MD simulations further improved predictions of the ligand binding mode and second extracellular loop. These results provide guidelines for application of MD refinement in prediction of GPCR-ligand complexes and directions for further method development.  相似文献   

7.
In this study, homology modeling, molecular docking and molecular dynamics simulation were performed to explore structural features and binding mechanism of some inhibitors of chemokine receptor type 5 (CCR5), and to construct a model for designing new CCR5 inhibitors for preventing HIV attachment to the host cell. A homology modeling procedure was employed to construct a 3D model of CCR5. For this procedure, the X-ray crystal structure of bovine rhodopsin (1F88A) at 2.80? resolution was used as template. After inserting the constructed model into a hydrated lipid bilayer, a 20ns molecular dynamics (MD) simulation was performed on the whole system. After reaching the equilibrium, twenty-four CCR5 inhibitors were docked in the active site of the obtained model. The binding models of the investigated antagonists indicate the mechanism of binding of the studied compounds to the CCR5 obviously. Moreover, 3D pictures of inhibitor-protein complex provided precious data regarding the binding orientation of each antagonist into the active site of this protein. One additional 20 ns MD simulation was performed on the initial structure of the CCR5-ligand 21 complex, resulted from the previous docking calculations, embedded in a hydrated POPE bilayer to explore the effects of the presence of lipid bilayer in the vicinity of CCR5-ligand complex. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.  相似文献   

8.
Galanin receptor type 2 (GALR2) is a class A G-protein-coupled receptor (GPCR), and it has been reported that orthosteric ligands and positive allosteric modulators (PAMs) of GALR2 could potentially be used to treat epilepsy. So far, the X-ray structure of this receptor has not been resolved, and knowledge of the 3D structure of GALR2 may prove informative in attempts to design novel ligands and to explore the mechanism for the allosteric modulation of this receptor. In this study, homology modeling was used to obtain several GALR2 models using known templates. ProSA-web Z-scores and Ramachandran plots as well as pre-screening against a test dataset of known compounds were all utilized to select the best model of GALR2. Molecular dockings of galanin (a peptide) and a nonpeptide ligand were carried out to choose the (GALR2 model)–galanin complex that showed the closest agreement with the corresponding experimental data. Finally, a 50-ns MD simulation was performed to study the interactions between the GALR2 model and the synthetic and endogenous ligands. The results from docking and MD simulation showed that, besides the reported residues, Tyr1604.60, Ile1053.32, Ala2747.35, and Tyr163ECL2 also appear to play important roles in the binding of galanin. The potential allosteric binding pockets in the GALR2 model were then investigated via MD simulation. The results indicated that the mechanism for the allosteric modulation caused by PAMs is the binding of the PAM at pocket III, which is formed by galanin, ECL2, TM2, TM3, and ECL1; this results in the disruption of the Na+-binding site and/or the Na+ ion pathway, leading to GALR2 agonism.  相似文献   

9.
Human thiopurine S-methyltransferase (TPMT) is an essential protein in 6-mercaptopurine (6MP) drug metabolism. To understand the pharmacogenetics of TPMT and 6MP, X-ray co-crystal structures of TPMT complexes with S-adenosyl-L-methionine (AdoMet) and 6MP are required. However, the co-crystal structure of this complex has not been reported because 6MP is poorly water soluble. We used molecular dynamics (MD) simulation to predict the structure of the complex of human TPMT-AdoHcy(CH2)6MP, where the sulfur atoms of AdoHcy and 6MP were linked by a CH2 group. After 1300 picoseconds of MD simulation, the trajectory showed that 6MP was stabilized in the TPMT active site by formation of non-bonded interactions between 6MP and Phe40, Pro196 and Arg226 side chains of TPMT. The intersulfur distance between AdoHcy and 6MP as well as the binding modes and the interactions of our TPMT-AdoHcy model are consistent with those observed in the X-ray crystal structure of murine TPMT-AdoHcy-6MP complex. The predicted binding modes of AdoHcy and 6MP in our model are consistent with those observed in murine TPMT X-ray crystal structures, which provides structural insights into the interactions of TPMT, AdoHcy, and 6MP at the atomic level and may be used as a starting point for further study of thiopurine drug pharmacogenetics.  相似文献   

10.
A new pharmacophore-based modeling procedure, including homology modeling, pharmacophore study, flexible molecular docking, and long-time molecular dynamics (MD) simulations, was employed to construct the structure of the human 5-HT_(2C) receptor and determine the characteristics of binding modes of 5-HT_(2C) receptor agonists. An agonist-receptor complex has been constructed based on homology modeling and a pharmacophore hypothesis model based on some high active compounds. Then MD simulations of the ligand-receptor complex in an explicit membrane environment were carried out. The conformation of the 5- HT_(2C) receptor during MD simulation was explored, and the stable binding modes of the studied agonist were determined. Flexible molecular docking of several structurally diverse agonists of the human 5-HT_(2C) receptor was carried out, and the general binding modes of these agonists were investigated. According to the models presented in this work and the results of Flexi-Dock, the involvement of the amino acid residues Asp134, Ser138, Ash210, Asn331, Tyr358, Ile131, Ser132, Val135, Thr139, Ile189, Val202, Val208, Leu209, Phe214, Val215, Gly218, Ser219, Phe223, Trp324, Phe327, and Phe328 in agonist recognition was studied. The obtained binding modes of the human 5-HT_(2C) receptor agonists have good agreement with the site-directed mutagenesis data and other studies.  相似文献   

11.
We have constructed a molecular model of the ligand-binding domain of the GABA(C) receptor, which is a member of the Cys-loop ligand-gated ion channel family. The extracellular domains of these receptors share similar sequence homology (20%) with Limnaea acetylcholine-binding protein for which an X-ray crystal structure is available. We used this structure as a template for homology modeling of the GABA(C) receptor extracellular domain using FUGUE and MODELLER software. FlexX was then used to dock GABA into the receptor ligand-binding site, resulting in three alternative energetically favorable orientations. Residues located no more than 5 A from the docked GABA were identified for each model; of these, three were found to be common to all models with 14 others present only in certain models. Using data from experimental studies, we propose that the most likely orientation of GABA is with its amine close to Y198, and its carboxylate close to R104. These studies have therefore provided a model of the ligand-binding domain, which will be useful for both GABA(C) and GABA(A) receptor studies, and have also yielded an experimentally testable hypothesis of the location of GABA in the binding pocket. [Figure: see text].  相似文献   

12.
The conformational property of oligosaccharide GT1B in aqueous environment was studied by molecular dynamics (MD) simulation using all-atom model. Based on the trajectory analysis, three prominent conformational models were proposed for GT1B. Direct and water-mediated hydrogen bonding interactions stabilize these structures. The molecular modeling and 15 ns MD simulation of the Botulinum Neuro Toxin/B (BoNT/B) - GT1B complex revealed that BoNT/B can accommodate the GT1B in the single binding mode. Least mobility was seen for oligo-GT1B in the binding pocket. The bound conformation of GT1B obtained from the MD simulation of the BoNT/B-GT1B complex bear a close conformational similarity with the crystal structure of BoNT/A-GT1B complex. The mobility noticed for Arg 1268 in the dynamics was accounted for its favorable interaction with terminal NeuNAc. The internal NeuNAc1 tends to form 10 hydrogen bonds with BoNT/B, hence specifying this particular site as a crucial space for the therapeutic design that can restrict the pathogenic activity of BoNT/B.  相似文献   

13.
Abstract

Dimerization or oligomerization of the ErbB/Neu receptors are necessary but not sufficient for initiation of receptor signaling. The two intracellular domains must be properly oriented for the juxtaposition of the kinase domains allowing trans-phosphorylation. This suggests that the transmembrane (TM) domain acts as a guide for defining the proper orientation of the intracellular domains.

Two structural models, with the two helices either in left-handed or in right-handed coiling have been proposed as the TM domain structure of the active receptor. Because experimental data do not distinguish clearly helix-helix packing, molecular dynamics (MD) simulations are used to investigate the energetic factors that drive Neu TM-TM interactions of the wild and the oncogenic receptor (Val664/Glu mutation) in DMPC or in POPC environments. MD results indicate that helix-lipid interactions in the bilayer core are extremely similar in the two environments and raise the role of the juxtamembrane residues in helix insertion and helix-helix packing. The TM domain shows a greater propensity to adopt a left-handed structure in DMPC, with helices in optimal position for strong inter-helical Hbonds induced by the Glu mutation. In POPC, the right-handed structure is preferentially formed with the participation of water in inter-helical Hbonds. The two structural arrangements of the NeuTM helices both with GG4 residue motif in close contact at the interface are permissible in the membrane environment. According to the hypothesis of a monomer-dimer equilibrium of the proteins it is likely that the bilayer imposes structural constraints that favor dimerization- competent structure responsible of the proper topology necessary for receptor activation.  相似文献   

14.
Dimerization or oligomerization of the ErbB/Neu receptors are necessary but not sufficient for initiation of receptor signaling. The two intracellular domains must be properly oriented for the juxtaposition of the kinase domains allowing trans-phosphorylation. This suggests that the transmembrane (TM) domain acts as a guide for defining the proper orientation of the intracellular domains. Two structural models, with the two helices either in left-handed or in right-handed coiling have been proposed as the TM domain structure of the active receptor. Because experimental data do not distinguish clearly helix-helix packing, molecular dynamics (MD) simulations are used to investigate the energetic factors that drive Neu TM-TM interactions of the wild and the oncogenic receptor (Val664/Glu mutation) in DMPC or in POPC environments. MD results indicate that helix-lipid interactions in the bilayer core are extremely similar in the two environments and raise the role of the juxtamembrane residues in helix insertion and helix-helix packing. The TM domain shows a greater propensity to adopt a left-handed structure in DMPC, with helices in optimal position for strong inter-helical Hbonds induced by the Glu mutation. In POPC, the right-handed structure is preferentially formed with the participation of water in inter-helical Hbonds. The two structural arrangements of the Neu(TM) helices both with GG4 residue motif in close contact at the interface are permissible in the membrane environment. According to the hypothesis of a monomer-dimer equilibrium of the proteins it is likely that the bilayer imposes structural constraints that favor dimerization-competent structure responsible of the proper topology necessary for receptor activation.  相似文献   

15.
Patny A  Desai PV  Avery MA 《Proteins》2006,65(4):824-842
Angiotensin II type 1 (AT(1)) receptor belongs to the super-family of G-protein-coupled receptors, and antagonists of the AT(1) receptor are effectively used in the treatment of hypertension. To understand the molecular interactions of these antagonists, such as losartan and telmisartan, with the AT(1) receptor, a homology model of the human AT(1) (hAT(1)) receptor with all connecting loops was constructed from the 2.6 A resolution crystal structure (PDB i.d., 1L9H) of bovine rhodopsin. The initial model generated by MODELLER was subjected to a stepwise ligand-supported model refinement. This protocol involved initial docking of non-peptide AT(1) antagonists in the putative binding site, followed by several rounds of iterative energy minimizations and molecular dynamics simulations. The final model was validated based on its correlation with several structure-activity relationships and site-directed mutagenesis data. The final model was also found to be in agreement with a previously reported AT(1) antagonist pharmacophore model. Docking studies were performed for a series of non-peptide AT(1) receptor antagonists in the active site of the final hAT(1) receptor model. The docking was able to identify key molecular interactions for all the AT(1) antagonists studied. Reasonable correlation was observed between the interaction energy values and the corresponding binding affinities of these ligands, providing further validation for the model. In addition, an extensive unrestrained molecular dynamics simulation showed that the docking-derived bound pose of telmisartan is energetically stable. Knowledge gained from the present studies can be used in structure-based drug design for developing novel ligands for the AT(1) receptor.  相似文献   

16.
CC chemokine receptor type-2 (CCR2) is a member of G-protein coupled receptors superfamily, expressed on the cell surface of monocytes and macrophages. It binds to the monocyte chemoattractant protein-1, a CC chemokine, produced at the sites of inflammation and infection. A homology model of human CCR2 receptor based on the recently available C-X-C chemokine recepor-4 crystal structure has been reported. Ligand information was used as an essential element in the homology modeling process. Six known CCR2 antagonists were docked into the model using simple and induced fit docking procedure. Docked complexes were then subjected to visual inspection to check their suitability to explain the experimental data obtained from site directed mutagenesis and structure-activity relationship studies. The homology model was refined, validated, and assessed for its performance in docking-based virtual screening on a set of CCR2 antagonists and decoys. The docked complexes of CCR2 with the known antagonists, TAK779, a dual CCR2/CCR5 antagonist, and Teijin-comp1, a CCR2 specific antagonist were subjected to molecular dynamics (MD) simulations, which further validated the binding modes of these antagonists. B-factor analysis of 20?ns MD simulations demonstrated that Cys190 is helpful in providing structural rigidity to the extracellular loop (EL2). Residues important for CCR2 antagonism were recognized using free energy decomposition studies. The acidic residue Glu291 from TM7, a conserved residue in chemokine receptors, is favorable for the binding of Teijin-comp1 with CCR2 by ΔG of ?11.4?kcal/mol. Its contribution arises more from the side chains than the backbone atoms. In addition, Tyr193 from EL2 contributes ?0.9?kcal/mol towards the binding of the CCR2 specific antagonist with the receptor. Here, the homology modeling and subsequent molecular modeling studies proved successful in probing the structure of human CCR2 chemokine receptor for the structure-based virtual screening and predicting the binding modes of CCR2 antagonists.  相似文献   

17.
Molecular dynamics (MD) simulations of the estrogen receptor DNA-binding domain (ERDBD) as a dimer in complex with its DNA response element (ERE) show a significant difference in both structure and dynamics, compared to a MD simulation of monomeric ERDBD bound to its half-site response element (EREH). The C-terminal zinc binding domain (ZnII), including a region (helix II) which is in a helical conformation in ERE-(ERDBD)2, is considerably more flexible in EREH-ERDBD than in the dimeric complex. In EREH-ERDBD, all helical hydrogen bonds in helix II are broken and the entire ZnII region is detached from a hydrogen bonding network that in ERE-(ERDBD)2 connects to other parts of the protein as well as to the DNA. The regions that become flexible in EREH-ERDBD are identical to the regions where the NMR solution structure of free ERDBD is poorly ordered. This strongly suggests that dimerisation of ERDBD is required for ordering of the ZnII region and that monomeric binding to DNA is not sufficient for the ordering. This contrasts to the glucocorticoid receptor DNA-binding domain (GRDBD) which has essentially the same mobility (uniform and limited), regardless of whether it is free as a monomer in solution, bound as a monomer to its half-site response element or in a dimeric complex with the full response element. The hydrogen bonding network that connects ZnII with other parts of the protein and to DNA is almost identical in ERDBD and GRDBD. However, in GRDBD there is also a serine (in the N-terminal zinc coordinating region) with a central role in this network, connecting to the ZnII region. This serine is replaced by a glycine in ERDBD and we suggest that this substitution is sufficient for destabilisation of the network, thus leading to a more flexible ZnII region, which becomes ordered first upon forming a complex with another ERDBD and DNA. Received: 6 March 1998 / Revised version: 22 June 1998 / Accepted: 2 September 1998  相似文献   

18.
Kimura SR  Tebben AJ  Langley DR 《Proteins》2008,71(4):1919-1929
Homology modeling of G protein-coupled receptors is becoming a widely used tool in drug discovery. However, unrefined models built using the bovine rhodopsin crystal structure as the template, often have binding sites that are too small to accommodate known ligands. Here, we present a novel systematic method to refine model active sites based on a pressure-guided molecular dynamics simulation. A distinct advantage of this approach is the ability to introduce systematic perturbations in model backbone atoms in addition to side chain adjustments. The method is validated on two test cases: (1) docking of retinal into an MD-relaxed structure of opsin and (2) docking of known ligands into a homology model of the CCR2 receptor. In both cases, we show that the MD expansion algorithm makes it possible to dock the ligands in poses that agree with the crystal structure or mutagenesis data.  相似文献   

19.
A computational approach to designing a peptide-based ligand for the purification of human serum albumin (HSA) was undertaken using molecular docking and molecular dynamics (MD) simulation. A three-step procedure was performed to design a specific ligand for HSA. Based on the candidate pocket structure of HSA (warfarin binding site), a peptide library was built. These peptides were then docked into the pocket of HSA using the GOLD program. The GOLDscore values were used to determine the affinity of peptides for HSA. Consequently, the dipeptide Trp–Trp, which shows a high GOLDscore value, was selected and linked to a spacer arm of Lys[CO(CH2)5NH] on the surface of ECH-lysine sepharose 4 gel. For further evaluation, the Autodock Vina program was used to dock the linked compound into the pocket of HSA. The docking simulation was performed to obtain a first guess of the binding structure of the spacer–Trp–Trp–HSA complex and subsequently analyzed by MD simulations to assess the reliability of the docking results. These MD simulations indicated that the ligand–HSA complex remains stable, and water molecules can bridge between the ligand and the protein by hydrogen bonds. Finally, absorption spectroscopic studies were performed to illustrate the appropriateness of the binding affinity of the designed ligand toward HSA. These studies demonstrate that the designed dipeptide can bind preferentially to the warfarin binding site. Graphical Abstract
Three-step computational approach to the design of a dipeptide ligand for human serum albumin purification exploiting structure-based docking and molecular dynamics simulation  相似文献   

20.
Liver X receptor (LXR) and peroxisome proliferator-activated receptor (PPAR) are two members of nuclear receptors involved in the nutrient metabolisms of dietary fatty acid and cholesterol. They are found to be of cross-talk function in that LXR regulates fatty acid synthesis and PPAR controls fatty acid degradation. LXRs (LXRalpha and LXRbeta) function by forming obligate heterodimers with the retinoid X receptor (RXR), and subsequently binding to specific DNA response elements within the regulatory regions of their target genes. In this work, the kinetic features concerning LXR/RXR and LXR/PPAR interactions have been fully investigated using surface plasmon resonance (SPR) technology. It is found that LXRs could bind to all the three PPAR subtypes, PPARalpha, PPARgamma and PPARdelta with different binding affinities, and such receptor/receptor interactions could be regulated by ligand binding. Moreover, molecular dynamics (MD) simulations were performed on six typical complex models. The results revealed that ligands may increase the interaction energies between the receptor interfaces of the simulated receptor/receptor complexes. The MD results are in agreement with the SPR data. Further analyses on the MD results indicated that the ligand binding might increase the hydrogen bonds between the interfaces of the receptor/receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号