首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RCAN1 (Adapt78) is an endogenous inhibitor of calcineurin, an important intracellular phosphatase that mediates many cellular responses to calcium. RCAN1 is expressed in multiple organs, especially heart, skeletal muscle and brain. In brain, it is thought to be important due to its strong expression, developmental regulation, abundance of target protein (calcineurin), and putative links to multiple brain-related disorders. Surprisingly, however, few studies have examined RCAN1 protein expression here. This has led to some confusion in the field over the exact nature and cell-type expression of isoform 4, the more studied of the two major RCAN1 protein isoforms, in brain. Here we characterize RCAN1 brain isoforms in more detail by assessing their size and distribution under conditions of calcium elevation, a hallmark of the isoform 4 response, and using rodent models to allow for more expanded analyses. We find that the 25-29 kDa version of this protein, reported in many non-brain studies, is indeed also present in neurons, and most observable after calcium induction. We also observe that expression of isoform 4 is not specific to neurons, as both microglia and astrocyte cells in culture exhibit a strong induction of isoform 4 protein following calcium stress that is not observable in non-stressed tissue sections. Isoform 1 expression is also observable in a primary glial cell-type (rat microglia). Finally, our observations confirm previous reports of low or non-detectable constitutive isoform expression in non-stressed glia, and of a larger sized, RCAN1 antibody-interacting species. These studies extend and complement previous studies on RCAN isoforms toward better understanding the role of RCAN1 in brain function and as a potential new target for treating calcineurin-related brain disorders.  相似文献   

2.
Studies on the role of regulator of calcineurin 1 (RCAN1) in immunity are limited, but have demonstrated an involvement in T-lymphocyte function. Here, we expand these studies to macrophages and in vivo infection. The treatment of RAW and primary mouse macrophages with lipopolysaccharide from Escherichia coli strongly induced RCAN1 isoform 4 (RCAN1-4), but not isoform 1. RCAN1-4 induction involved calcium, calcineurin, and reactive oxygen species. Subsequent analysis with whole bacteria including gram-negative E. coli and gram-positive Staphylococcus aureus revealed strong RCAN1-4 inductions by both, and where tested, dependence on calcium. Staphylococcus aureus cell wall components peptidoglycan and lipoteichoic acid also strongly induced RCAN1-4. In vivo, a significant induction in the proinflammatory cytokines monocyte chemotactic protein-1, interleukin-6, interferon-γ, and tumor necrosis factor-α was observed in knockout (KO) lung vs. wild-type (WT) mice 7 days after nasal infection with Fransicella tularensis. This induction was not accompanied by a significant increase in F. tularensis burden in the KO lung. Additionally, a modest increase in respiratory burst activity in KO vs. WT macrophages was observed. Combined, these studies indicate that RCAN1 is involved in macrophage and the overall in vivo immune response, and provide additional evidence that RCAN1 plays an important role in cell immunity and infectious disease.  相似文献   

3.
Forced changes in the expression of regulator of calcineurin 1 (RCAN1) affects cell growth. This has been linked to the suppression of calcineurin-nuclear factor of activated T cells signaling by RCAN1. Here, we describe a novel role of RCAN1 isoform 4 in proper expression of Ras protein and its signaling. RCAN1 isoform 4 knockdown attenuated growth factor-induced extracellular signal-regulated kinase activation and cell growth; reduced Ras levels and its translation rate; and led to a reduction of eukaryotic initiation factor 4E in the initiation complex and a slight repression of global protein synthesis. Experiments utilizing activity-modified mutants of calcineurin A demonstrated that these effects were calcineurin-independent. Our findings reveal a previously unknown role of RCAN1-4 in protein synthesis, which may be relevant to cell growth.  相似文献   

4.
5.

Background

Vascular endothelial growth factor (VEGF) has previously been shown to upregulate the expression of the endogenous calcineurin inhibitor, regulator of calcineurin 1, variant 4 (RCAN1.4). The aim of this study was to determine the role and regulation of VEGF-mediated RCAN1.4 expression, using human dermal microvascular endothelial cells (HDMECs) as a model system.

Methodology/Principal Findings

We show that VEGF is able to induce RCAN1.4 expression during cellular proliferation and differentiation, and that VEGF-mediated expression of RCAN1.4 was inhibited by the use of inhibitors to protein kinase C (PKC) and calcineurin. Further analysis revealed that siRNA silencing of PKC-delta expression partially inhibited VEGF-stimulated RCAN1.4 expression. Knockdown of RCAN1.4 with siRNA resulted in a decrease in cellular migration and disrupted tubular morphogenesis when HDMECs were either stimulated with VEGF in a collagen gel or in an endothelial/fibroblast co-culture model of angiogenesis. Analysis of intracellular signalling revealed that siRNA mediated silencing of RCAN1.4 resulted in increased expression of specific nuclear factor of activated T-cells (NFAT) regulated genes.

Conclusions/Significance

Our data suggests that RCAN1.4 expression is induced by VEGFR-2 activation in a Ca2+ and PKC-delta dependent manner and that RCAN1.4 acts to regulate calcineurin activity and gene expression facilitating endothelial cell migration and tubular morphogenesis.  相似文献   

6.
RCAN1, also known as DSCR1, is an endogenous regulator of calcineurin, a serine/threonine protein phosphatase that plays a critical role in many physiological processes. In this report, we demonstrate that p38?? MAP kinase can phosphorylate RCAN1 at multiple sites in vitro and show that phospho-RCAN1 is a good protein substrate for calcineurin. In addition, we found that unphosphorylated RCAN1 noncompetitively inhibits calcineurin protein phosphatase activity and that the phosphorylation of RCAN1 by p38?? MAP kinase decreases the binding affinity of RCAN1 for calcineurin. These findings reveal the molecular mechanism by which p38?? MAP kinase regulates the function of RCAN1/calcineurin through phosphorylation.  相似文献   

7.
8.
9.
Pituitary adenylate cyclase-activating peptide (PACAP) is a neurotrophic peptide involved in a wide range of nervous functions, including development, differentiation, and survival, and various aspects of learning and memory. Here we report that PACAP induces the expression of regulator of calcineurin 1 (RCAN1, also known as DSCR1), which is abnormally expressed in the brains of Down syndrome patients. Increased RCAN1 expression is accompanied by activation of the PKA-cAMP response element-binding protein pathways. EMSA and ChIP analyses demonstrate the presence of a functional cAMP response element in the RCAN1 promoter. Moreover, we show that PACAP-dependent neuronal differentiation is significantly disturbed by improper RCAN1 expression. Our data provide the first evidence of RCAN1, a Down syndrome-related gene, as a novel target for control of the neurotrophic function of PACAP.  相似文献   

10.
11.
In skeletal muscles, angiogenesis can be induced by increases in wall shear stress. To identify molecules involved in the angiogenic process, a method based on the use of BS-1 lectin-coated magnetic beads was developed to isolate a cellular fraction enriched in microvascular endothelial cells which are directly exposed to wall shear stress. Using such cellular fractions from skeletal muscles of C57 mice in which angiogenesis was induced by administration with the alpha(1)-adrenergic antagonist prazosin, we found the concentration of vascular endothelial growth factor (VEGF) increased in correlation to the duration of the prazosin stimulus. In contrast, the angiopoietin-2/tie-2 system was not changed even after 4days of prazosin treatment. In neuronal nitric oxide synthase (nNOS) knockout mice, the VEGF concentration was also elevated after prazosin treatment but remained almost unchanged in endothelial nitric oxide synthase (eNOS) knockout mice. However, eNOS (and not nNOS) knockout mice expressed higher levels of VEGF under non-stimulated conditions as compared to C57 mice. These results suggest that VEGF produced in endothelial cells is involved in angiogenesis in skeletal muscles of mice responding to the administration of systemic vasodilators. NO derived from eNOS and nNOS may be an important regulator of the angiogenic response in skeletal muscles in vivo.  相似文献   

12.
Nitric oxide has been shown to be beneficial for gastric ulcer healing. We determined the relative effects of endothelial and inducible nitric oxide synthases on gastric ulcer healing in rats. Ulcers were induced by serosal application of acetic acid. Ulcer severity, angiogenesis, and nitric oxide synthase expression were assessed 3-10 days later. The effects of inhibitors of nitric oxide synthase were also examined. Inducible nitric oxide synthase mRNA was only detected in ulcerated tissue (maximal at day 3), whereas the endothelial isoform mRNA was detected in normal tissue and increased during ulcer healing. Inducible nitric oxide synthase was expressed in inflammatory cells in the ulcer bed, whereas endothelial nitric oxide synthase was found in the vascular endothelium and in some mucosal cells in both normal and ulcerated tissues. Angiogenesis changed in parallel with endothelial nitric oxide synthase expression. N(6)-(iminoethyl)-L-lysine did not affect angiogenesis or ulcer healing, while N(G)-nitro-L-arginine methyl ester significantly reduced both. In conclusion, endothelial nitric oxide synthase, but not the inducible isoform, plays a significant role in gastric ulcer healing.  相似文献   

13.
14.
15.
Regulator of calcineurin 1 (RCAN1; also referred as DSCR1 or MCIP1) is located in close proximity to a Down syndrome critical region of human chromosome 21. Although RCAN1 is an endogenous inhibitor of calcineurin signaling that controls lymphocyte activation, apoptosis, heart development, skeletal muscle differentiation, and cardiac function, it is not yet clear whether RCAN1 might be involved in other cellular activities. In this study, we explored the extra-functional roles of RCAN1 by searching for novel RCAN1-binding partners. Using a yeast two-hybrid assay, we found that RCAN1 (RCAN1-1S) interacts with histone deacetylase 3 (HDAC3) in mammalian cells. We also demonstrate that HDAC3 deacetylates RCAN1. In addition, HDAC3 increases RCAN1 protein stability by inhibiting its poly-ubiquitination. Furthermore, HDAC3 promotes RCAN1 nuclear translocation. These data suggest that HDAC3, a new binding regulator of RCAN1, affects the protein stability and intracellular localization of RCAN1.  相似文献   

16.
17.
Bumetanide and other high-ceiling diuretics (HCD) attenuate myogenic tone and contractions of vascular smooth muscle cells (VSMC) triggered by diverse stimuli. HCD outcome may be mediated by their interaction with NKCC1, the only isoform of Na+, K+, 2Cl cotransporter expressed in VSMC as well as with targets distinct from this carrier. To examine these hypotheses, we compared the effect of bumetanide on contractions of mesenteric arteries from wild-type and NKCC1 knockout mice. In mesenteric arteries from wild-type controls, 100 μM bumetanide evoked a decrease of up to 4-fold in myogenic tone and contractions triggered by modest [K+]o-induced depolarization, phenylephrine and UTP. These actions of bumetanide were preserved after inhibition of nitric oxide synthase with NG-nitro-l-arginine methyl ester, but were absent in mesenteric arteries from NKCC1-/- mice. The data show that bumetanide inhibits VSMC contractile responses via its interaction with NKCC1 and independently of nitric oxide production by endothelial cells.  相似文献   

18.
Ischemia-reperfusion (I/R) induced acute kidney injury (AKI), characterized by excessive mitochondrial damage and cell apoptosis, remains a clinical challenge. Recent studies suggest that regulator of calcineurin 1 (RCAN1) regulates mitochondrial function in different cell types, but the underlying mechanisms require further investigation. Herein, we aim to explore whether RCAN1 involves in mitochondrial dysfunction in AKI and the exact mechanism. In present study, AKI was induced by I/R and cisplatin in RCAN1flox/flox mice and mice with renal tubular epithelial cells (TECs)-specific deletion of RCAN1. The role of RCAN1 in hypoxia-reoxygenation (HR) and cisplatin-induced injury in human renal proximal tubule epithelial cell line HK-2 was also examined by overexpression and knockdown of RCAN1. Mitochondrial function was assessed by transmission electron microscopy, JC-1 staining, MitoSOX staining, ATP production, mitochondrial fission and mitophagy. Apoptosis was detected by TUNEL assay, Annexin V-FITC staining and Western blotting analysis of apoptosis-related proteins. It was found that protein expression of RCAN1 was markedly upregulated in I/R- or cisplatin-induced AKI mouse models, as well as in HR models in HK-2 cells. RCAN1 deficiency significantly reduced kidney damage, mitochondrial dysfunction, and cell apoptosis, whereas RCAN1 overexpression led to the opposite phenotypes. Our in-depth mechanistic exploration demonstrated that RCAN1 increases the phosphorylation of mitochondrial fission factor (Mff) by binding to downstream c-Jun N-terminal kinase (JNK), then promotes dynamin related protein 1 (Drp1) migration to mitochondria, ultimately leads to excessive mitochondrial fission of renal TECs. In conclusion, our study suggests that RCAN1 could induce mitochondrial dysfunction and apoptosis by activating the downstream JNK/Mff signaling pathway. RCAN1 may be a potential therapeutic target for conferring protection against I/R- or cisplatin-AKI. Subject terms: Pathogenesis, Medical research  相似文献   

19.
The RCAN1 gene encodes three different protein isoforms: RCAN1-4, RCAN1-1L, and RCAN1-1S. RCAN1-1L is the RCAN1 isoform predominantly expressed in human brains. RCAN1 proteins have been shown to regulate various other proteins and cellular functions, including calcineurin, glycogen synthase kinase-3β (GSK-3β), the mitochondrial adenine nucleotide transporter (ANT), stress adaptation, ADP/ATP exchange in mitochondria, and the mitochondrial permeability transition pore (mtPTP). The effects of increased RCAN1 gene expression seem to depend both on the specific RCAN1 protein isoform(s) synthesized and on the length of time the level of each isoform is elevated. Transiently elevated RCAN1-4 and RCAN1-1L protein levels, lasting just a few hours, can be neuroprotective under acute stress conditions, including acute oxidative stress. We propose that, by transiently inhibiting the phosphatase calcineurin, RCAN1-4 and RCAN1-1L may reinforce and extend protective stress-adaptive cell responses. In contrast, prolonged elevation of RCAN1-1L levels is associated with the types of neurodegeneration observed in several diseases, including Alzheimer disease and Down syndrome. RCAN1-1L levels can also be increased by multiple chronic stresses and by glucocorticoids, both of which can cause neurodegeneration. Although increasing levels of RCAN1-1L for just a few months has no overtly obvious neurodegenerative effect, it does suppress neurogenesis. Longer term elevation of RCAN1-1L levels (for at least 16 months), however, can lead to the first signs of neurodegeneration. Such neurodegeneration may be precipitated by (RCAN1-1L-mediated) prolonged calcineurin inhibition and GSK-3β induction/activation, both of which promote tau hyperphosphorylation, and/or by (RCAN1-1L-mediated) effects on the mitochondrial ANT, diminished ATP/ADP ratio, opening of the mtPTP, and mitochondrial autophagy. We propose that RCAN1-1L operates through various molecular mechanisms, primarily dependent upon the length of time protein levels are elevated. We also suggest that models analyzing long-term RCAN1 gene overexpression may help us to understand the molecular mechanisms of neurodegeneration in diseases such as Alzheimer disease, Down syndrome, and possibly others.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号