首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The DNA replication apparatus of archaea represents a core version of that in eukaryotes. Archaeal Orc1/Cdc6s can be an integral component in the replication machineries cooperatively regulating DNA replication. We investigated the DNA-binding activities of two eukaryote-like Orc1/Cdc6 proteins (SsoCdc6-1 and -2) and interactions between them on the different structural duplex DNA substrates derived from oriC1 of Sulfolobus solfataricus. The results showed that two Orc1/Cdc6 proteins stimulated mutual DNA-binding activities at lower concentrations and formed bigger SsoCdc6-1/SsoCdc6-2/DNA complex at higher concentrations. Furthermore, SsoCdc6-2 stimulated the DNA-binding activity of SsoMCM and demonstrated a high affinity to the 5-forked DNA. In contrast, SsoCdc6-1 inhibited the binding of SsoMCM and demonstrated better affinity to the sequence-specific blunt DNA substrate. Finally, we found that the two proteins physically interacted with each other and with SsoMCM. Thus, the two Orc1/Cdc6 proteins were functionally different, but they may keep the coordinated interaction on the replication origin.  相似文献   

2.
The crenarchaeon Sulfolobus solfataricus contains three active origins of replication and three eukaryote-like Cdc6/Orc1 proteins known as SsoCdc6 proteins. It has the potential to become a powerful model system in understanding the central mechanism of the eukaryotic DNA replication. In this research, we designed a group of duplex DNA substrates containing specific origin recognition boxes (ORBs) of the archaeon and identified the DNA-binding activities of different SsoCdc6 proteins. Furthermore, we showed that the DNA-protein interaction between the DNA substrate and the SsoCdc6-1 or SsoCdc6-3 strikingly regulated their DNA-binding activities of each other on the origin. On the other hand, the protein-protein interactions between SsoCdc6-1 and SsoCdc6-2 were observed to mutually modulate the stimulating or inhibitive effects on the DNA-binding activities of each other. Thus, two different mechanisms were demonstrated to be involved in the regulations of the functions of the SsoCdc6 proteins on the replication origins. The results of this study imply that the interactions between multiple SsoCdc6 proteins and origin DNA collectively contribute to the positive or negative regulation of DNA replication initiation in the archaeon species.  相似文献   

3.
The roles of Y-family DNA polymerases and the regulation mechanisms are not well defined in Archaea. In this study, we performed in vitro and in vivo characterization of the physical interaction between the archaeon Sulfolobus solfataricus Y-family DNA polymerase (SsoPolY) and three eukaryote-like Orc1/Cdc6 proteins (SsoCdc6-1, SsoCdc6-2, and SsoCdc6-3). The effect of SsoCdc6-2 was the strongest, and the three SsoCdc6 proteins were shown to have very different effects on the function of SsoPolY. SsoCdc6-2 inhibited both the DNA-binding activity and DNA polymerization activity of SsoPolY on the DNA substrates containing mismatched bases, while it formed a large complex with SsoPolY and stimulated DNA-binding activity on paired primer-template DNA substrates. SsoCdc6-2 and S. solfataricus PCNA (SsoPCNA) showed a cooperative effect on polymerization by SsoPolY on paired DNA templates, but SsoCdc6 reduced the stimulating effect of SsoPCNA on this polymerization on mismatched DNA substrates. Therefore, we uncovered a DNA substrate-dependent SsoCdc6/SsoPolY interaction mechanism. This is the first evidence for a physical and functional linkage between archaeal eukaryote-like Orc1/Cdc6 proteins and Y-family DNA polymerase.  相似文献   

4.
The Cdc6 protein has been suggested as a loader for the eukaryotic MCM helicase. Archaeal replication machinery represents a core version of that in eukaryotes. In the current work, three eukaryotic Orc1/Cdc6 homologs (SsoCdc6-1, -2, and -3) from crenarchaeon Sulfolobus solfataricus were shown to have totally different effects on the interactions with SsoMCM helicase. SsoCdc6-2 stimulates the binding of the SsoMCM onto the origin DNA, but SsoCdc6-1 and SsoCdc6-3 significantly inhibit the loading activities, and these inhibitive effects can not be reversed by the stimulation of SsoCdc6-2. Using pull-down assays, we showed that three SsoCdc6 proteins interacted physically with the SsoMCM. Furthermore, the C-terminal domains of SsoCdc6 proteins were shown to physically and functionally affect the interactions with SsoMCM. This is the first report on the divergent functions of multiple eukaryote-like Orc1/Cdc6 proteins on regulating the loading of the MCM helicase onto the origins in the archaeon.  相似文献   

5.
The crenarchaeon Sulfolobus solfataricus has the potential to be a powerful model system to understand the central mechanism of eukaryotic DNA replication because it contains three active origins of replication and three eukaryote-like Orc1/Cdc6 proteins. However, it is not known whether these SsoCdc6 proteins can functionally interact and collectively contribute to DNA replication initiation. In the current work, we found that SsoCdc6-1 stimulates DNA-binding activities of SsoCdc6-3. In contrast, SsoCdc6-3 inhibits those of both SsoCdc6-1 and SsoCdc6-2. These regulatory functions are differentially affected by the C-terminal domains of these SsoCdc6 proteins. These data, in conjunction with studies on physical interactions between these replication initiators by bacterial two-hybrid and pull-down/Western blot assays, lead us to propose the possibility that multiple SsoCdc6 proteins might coordinately regulate DNA replication in the archaeon species. This is the first report on the functional interaction among the archaeal multiple Cdc6 proteins to regulate DNA replication.  相似文献   

6.
Unlike bacteria, many eukaryotes initiate DNA replication from genomic sites that lack apparent sequence conservation. These loci are identified and bound by the origin recognition complex (ORC), and subsequently activated by a cascade of events that includes recruitment of an additional factor, Cdc6. Archaeal organisms generally possess one or more Orc1/Cdc6 homologs, belonging to the Initiator clade of ATPases associated with various cellular activities (AAA(+)) superfamily; however, these proteins recognize specific sequences within replication origins. Atomic resolution studies have shown that archaeal Orc1 proteins contact double-stranded DNA through an N-terminal AAA(+) domain and a C-terminal winged-helix domain (WHD), but use remarkably few base-specific contacts. To investigate the biochemical effects of these associations, we mutated the DNA-interacting elements of the Orc1-1 and Orc1-3 paralogs from the archaeon Sulfolobus solfataricus, and tested their effect on origin binding and deformation. We find that the AAA(+) domain has an unpredicted role in controlling the sequence selectivity of DNA binding, despite an absence of base-specific contacts to this region. Our results show that both the WHD and ATPase region influence origin recognition by Orc1/Cdc6, and suggest that not only DNA sequence, but also local DNA structure help define archaeal initiator binding sites.  相似文献   

7.
The biological role of archaeal proteins, homologous to the eukaryal replication initiation factors of cell division control (Cdc6) and origin recognition complex (ORC1), has not yet been clearly established. The hyperthermophilic crenarchaeon Sulfolobus solfataricus (referred to as Sso) possesses three Cdc6/ORC1-like factors, which are named Sso Cdc6-1, Cdc6-2 and Cdc6-3. This study is a report on the biochemical characterization of Sso Cdc6-1 and Cdc6-3. It has been found that either Sso Cdc6-1 or Cdc6-3 behave as monomers in solutions by gel filtration analyses. Both factors are able to bind to various single-stranded and double-stranded DNA ligands, but Sso Cdc6-3 shows a higher DNA-binding affinity. It has also been observed that either Sso Cdc6-1 or Cdc6-3 inhibit the DNA unwinding activity of the S. solfataricus homo-hexameric mini-chromosome maintenance (MCM)-like DNA helicase (Sso MCM); although they strongly stimulate the interaction of the Sso MCM with bubble-containing synthetic oligonucleotides. The study has also showed, with surface plasmon resonance measurements, that Sso Cdc6-2 physically interacts with either Sso Cdc6-1 or Sso Cdc6-3. These findings may provide important clues needed to understand the biological role that is played by each of these three Cdc6 factors during the DNA replication initiation process in the S. solfataricus cells.  相似文献   

8.
The eukaryotic pre-replication complex is assembled at replication origins in a reaction called licensing. Licensing involves the interactions of a variety of proteins including the origin recognition complex (ORC), Cdc6 and the Mcm2-7 helicase, homologues of which are also found in archaea. The euryarchaeote Archaeoglobus fulgidus encodes two genes with homology to Orc/Cdc6 and a single Mcm homologue. The A.fulgidus Mcm protein and one Orc/Cdc6 homologue have been purified and investigated in vitro. The Mcm protein is an ATP-dependent, hexameric helicase that can unwind between 200 and 400 bp of duplex DNA. Deletion of 112 amino acids from the N-terminus of A.f Mcm produced a protein, which was still capable of forming a hexamer, was competent in DNA binding and was able to unwind at least 1 kb of duplex DNA. The purified Orc/Cdc6 homologue was also able to bind DNA. Both Mcm and Orc/Cdc6 show a preference for specific DNA structures, namely molecules containing a single stranded bubble that mimics early replication intermediates. Nuclease protection showed that the binding sites for Mcm and Orc/Cdc6 overlap. The Orc/Cdc6 protein bound more tightly to these substrates and was able to displace pre-bound Mcm hexamer.  相似文献   

9.
Eukaryotic DNA replication is initiated through stepwise assembly of evolutionarily conserved replication proteins onto replication origins, but how the origin DNA is unwound during the assembly process remains elusive. Here, we established a site-specific origin on a plasmid DNA, using in vitro replication systems derived from Xenopus egg extracts. We found that the pre-replicative complex (pre-RC) was preferentially assembled in the vicinity of GAL4 DNA-binding sites of the plasmid, depending on the binding of Cdc6 fused with a GAL4 DNA-binding domain in Cdc6-depleted extracts. Subsequent addition of nucleoplasmic S-phase extracts to the GAL4-dependent pre-RC promoted initiation of DNA replication from the origin, and components of the pre-initiation complex (pre-IC) and the replisome were recruited to the origin concomitant with origin unwinding. In this replication system, RecQ4 is dispensable for both recruitment of Cdc45 onto the origin and stable binding of Cdc45 and GINS to the pre-RC assembled plasmid. However, both origin binding of DNA polymerase α and unwinding of DNA were diminished upon depletion of RecQ4 from the extracts. These results suggest that RecQ4 plays an important role in the conversion of pre-ICs into active replisomes requiring the unwinding of origin DNA in vertebrates.  相似文献   

10.
11.
Archaeal cell division cycle protein 6 (Cdc6)/Origin Replication Complex subunit 1 (Orc1) proteins share sequence homology with eukaryotic DNA replication initiation factors but are also structurally similar to the bacterial initiator DnaA. To better understand whether Cdc6/Orc1 functions in an eukaryotic or bacterial-like manner, we have characterized the interaction of two Cdc6/Orc1 paralogs (mthCdc6-1 and mthCdc6-2) with the replication origin from Methanothermobacter thermoautotrophicus. We show that while both proteins display a low affinity for a small dsDNA of random sequence, mthCdc6-1 binds tightly to a short duplex containing a single copy of a 13 bp sequence that is repeated throughout the origin. Surprisingly, sequence comparisons show that this 13 bp sequence is a minimized version of the Origin Recognition Box element found in many euryarchaeotal origins. Analysis of mthCdc6-1 mutants demonstrates that the helix–turn–helix motif in the winged-helix domain mediates the interaction with this sequence. Association of both mthCdc6/Orc1 paralogs with the duplex containing the minimized Origin Recognition Box fits to an independent binding sites model, but their interaction with longer DNA ligands is cooperative. Together, our data provide the first detailed biophysical characterization of the association of an archaeal DNA replication initiator with its origin. Our observations also indicate that the origin-binding properties of Cdc6/Orc1 proteins closely resemble those of bacterial DnaA.  相似文献   

12.
Cdc6 proteins play an essential role in the initiation of chromosomal DNA replication in Eukarya. Genes coding for putative homologs of Cdc6 have been also identified in the genomic sequence of Archaea, but the properties of the corresponding proteins have been poorly investigated so far. Herein, we report the biochemical characterization of one of the three putative Cdc6-like factors from the hyperthermophilic crenarchaeon Sulfolobus solfataricus (SsoCdc6-1). SsoCdc6-1 was overproduced in Escherichia coli as a His-tagged protein and purified to homogeneity. Gel filtration and glycerol gradient ultracentrifugation experiments indicated that this protein behaves as a monomer in solution (molecular mass of about 45 kDa). We demonstrated that SsoCdc6-1 binds single- and double-stranded DNA molecules by electrophoretic mobility shift assays. SsoCdc6-1 undergoes autophosphorylation in vitro and possesses a weak ATPase activity, whereas the protein with a mutation in the Walker A motif (Lys-59 --> Ala) is completely unable to hydrolyze ATP and does not autophosphorylate. We found that SsoCdc6-1 strongly inhibits the ATPase and DNA helicase activity of the S. solfataricus MCM protein. These findings provide the first in vitro biochemical evidence of a functional interaction between a MCM complex and a Cdc6 factor and have important implications for the understanding of the Cdc6 biological function.  相似文献   

13.
The specification of mammalian chromosomal replication origins is incompletely understood. To analyze the assembly and activation of prereplicative complexes (pre-RCs), we tested the effects of tethered binding of chromatin acetyltransferases and replication proteins on chromosomal c-myc origin deletion mutants containing a GAL4-binding cassette. GAL4DBD (DNA binding domain) fusions with Orc2, Cdt1, E2F1 or HBO1 coordinated the recruitment of the Mcm7 helicase subunit, the DNA unwinding element (DUE)-binding protein DUE-B and the minichromosome maintenance (MCM) helicase activator Cdc45 to the replicator, and restored origin activity. In contrast, replication protein binding and origin activity were not stimulated by fusion protein binding in the absence of flanking c-myc DNA. Substitution of the GAL4-binding site for the c-myc replicator DUE allowed Orc2 and Mcm7 binding, but eliminated origin activity, indicating that the DUE is essential for pre-RC activation. Additionally, tethering of DUE-B was not sufficient to recruit Cdc45 or activate pre-RCs formed in the absence of a DUE. These results show directly in a chromosomal background that chromatin acetylation, Orc2 or Cdt1 suffice to recruit all downstream replication initiation activities to a prospective origin, and that chromosomal origin activity requires singular DNA sequences.  相似文献   

14.
Accurate DNA replication requires a complex interplay of many regulatory proteins at replication origins. The CMG (Cdc45·Mcm2-7·GINS) complex, which is composed of Cdc45, Mcm2-7, and the GINS (Go-Ichi-Ni-San) complex consisting of Sld5 and Psf1 to Psf3, is recruited by Cdc6 and Cdt1 onto origins bound by the heterohexameric origin recognition complex (ORC) and functions as a replicative helicase. Trypanosoma brucei, an early branched microbial eukaryote, appears to express an archaea-like ORC consisting of a single Orc1/Cdc6-like protein. However, unlike archaea, trypanosomes possess components of the eukaryote-like CMG complex, but whether they form an active helicase complex, associate with the ORC, and regulate DNA replication remains unknown. Here, we demonstrated that the CMG complex is formed in vivo in trypanosomes and that Mcm2-7 helicase activity is activated by the association with Cdc45 and the GINS complex in vitro. Mcm2-7 and GINS proteins are confined to the nucleus throughout the cell cycle, whereas Cdc45 is exported out of the nucleus after DNA replication, indicating that nuclear exclusion of Cdc45 constitutes one mechanism for preventing DNA re-replication in trypanosomes. With the exception of Mcm4, Mcm6, and Psf1, knockdown of individual CMG genes inhibits DNA replication and cell proliferation. Finally, we identified a novel Orc1-like protein, Orc1b, as an additional component of the ORC and showed that both Orc1b and Orc1/Cdc6 associate with Mcm2-7 via interactions with Mcm3. All together, we identified the Cdc45·Mcm2-7·GINS complex as the replicative helicase that interacts with two Orc1-like proteins in the unusual origin recognition complex in trypanosomes.  相似文献   

15.
Eukaryotic DNA replication is preceded by the assembly of prereplication complexes (pre-RCs) at or very near origins in G1 phase, which licenses origin firing in S phase. The archaeal DNA replication machinery broadly resembles the eukaryal apparatus, though simpler in form. The eukaryotic replication initiator origin recognition complex (ORC), which serially recruits Cdc6 and other pre-RC proteins, comprises six components, Orc1-6. In archaea, a single gene encodes a protein similar to both the eukaryotic Cdc6 and the Orc1 subunit of the eukaryotic ORC, with most archaea possessing one to three Orc1/Cdc6 orthologs. Genome sequence analysis of the extreme acidophile Picrophilus torridus revealed a single Orc1/Cdc6 (PtOrc1/Cdc6). Biochemical analyses show MBP-tagged PtOrc1/Cdc6 to preferentially bind ORB (origin recognition box) sequences. The protein hydrolyzes ATP in a DNA-independent manner, though DNA inhibits MBP-PtOrc1/Cdc6-mediated ATP hydrolysis. PtOrc1/Cdc6 exists in stable complex with PCNA in Picrophilus extracts, and MBP-PtOrc1/Cdc6 interacts directly with PCNA through a PIP box near its C terminus. Furthermore, PCNA stimulates MBP-PtOrc1/Cdc6-mediated ATP hydrolysis in a DNA-dependent manner. This is the first study reporting a direct interaction between Orc1/Cdc6 and PCNA in archaea. The bacterial initiator DnaA is converted from an active to an inactive form by ATP hydrolysis, a process greatly facilitated by the bacterial ortholog of PCNA, the β subunit of Pol III. The stimulation of PtOrc1/Cdc6-mediated ATP hydrolysis by PCNA and the conservation of PCNA-interacting protein motifs in several archaeal PCNAs suggest the possibility of a similar mechanism of regulation existing in archaea. This mechanism may involve other yet to be identified archaeal proteins.  相似文献   

16.
In the “Replicon Theory”, Jacob, Brenner and Cuzin proposed the existence of replicators and initiators as the two major actors in DNA replication. Over the years, many protein components of initiators have been shown to be conserved in different organisms during evolution. By contrast, replicator DNA sequences (often referred to as replication origins) have diverged beyond possible comparison between eukaryotic genomes. Replication origins in the fission yeast Schizosaccharomyces pombe are made up of A + T-rich sequences that do not share any consensus elements. The information encoded in these replicators is interpreted by the Orc4 subunit of the ORC (origin recognition complex), which is unique among eukaryotes in that it contains a large domain harboring nine AT-hook subdomains that target ORC to a great variety of A + T-rich sequences along the chromosomes. Recently, the genomes of other Schizosaccharomyces species have been sequenced and the regions encompassing their replication origins have been identified. DNA sequence analysis and comparison of the organization of their Orc4 proteins have revealed species-specific differences that contribute to our understanding of how the specification of replication origins has evolved during the phylogenetic divergence of fission yeasts.  相似文献   

17.
In eukaryotes, the origin recognition complex (ORC) is essential for the initiation of DNA replication. The largest subunit of this complex (ORC1) has a regulatory role in origin activation. Here we report the cloning and functional characterization of Plasmodium falciparum ORC1 homolog. Using immunofluorescence and immunoelectron microscopy, we show here that PfORC1 is expressed in the nucleus during the late trophozoite and schizont stages where maximum amount of DNA replication takes place. Homology modelling of the carboxy terminal region of PfORC1 (781-1033) using Saccharomyces pombe Cdc6/Cdc18 homolog as a template reveals the presence of a similar AAA+ type nucleotide-binding fold. This region shows ATPase activity in vitro that is important for the origin activity. To our knowledge, this is the first evidence of an individual ORC subunit that shows ATPase activity. These observations strongly suggest that PfORC1 might be involved in DNA replication initiation during the blood stage of the parasitic life cycle.  相似文献   

18.
The initiation step is a key process to regulate the frequency of DNA replication. Although recent studies in Archaea defined the origin of DNA replication (oriC) and the Cdc6/Orc1 homolog as an origin recognition protein, the location and mechanism of duplex opening have remained unclear. We have found that Cdc6/Orc1 binds to oriC and unwinds duplex DNA in the hyperthermophilic archaeon Pyrococcus furiosus, by means of a P1 endonuclease assay. A primer extension analysis further revealed that this localized unwinding occurs in the oriC region at a specific site, which is 12-bp long and rich in adenine and thymine. This site is different from the predicted duplex unwinding element (DUE) that we reported previously. We also discovered that Cdc6/Orc1 induces topological changes in supercoiled oriC DNA, and that this process is dependent on the AAA+ domain. These results indicate that topological alterations of oriC DNA by Cdc6/Orc1 introduce a single-stranded region at the 12-mer site, that could possibly serve as an entry point for Mcm helicase.  相似文献   

19.
20.

Background

Information transfer systems in Archaea, including many components of the DNA replication machinery, are similar to those found in eukaryotes. Functional assignments of archaeal DNA replication genes have been primarily based upon sequence homology and biochemical studies of replisome components, but few genetic studies have been conducted thus far. We have developed a tractable genetic system for knockout analysis of genes in the model halophilic archaeon, Halobacterium sp. NRC-1, and used it to determine which DNA replication genes are essential.

Results

Using a directed in-frame gene knockout method in Halobacterium sp. NRC-1, we examined nineteen genes predicted to be involved in DNA replication. Preliminary bioinformatic analysis of the large haloarchaeal Orc/Cdc6 family, related to eukaryotic Orc1 and Cdc6, showed five distinct clades of Orc/Cdc6 proteins conserved in all sequenced haloarchaea. Of ten orc/cdc6 genes in Halobacterium sp. NRC-1, only two were found to be essential, orc10, on the large chromosome, and orc2, on the minichromosome, pNRC200. Of the three replicative-type DNA polymerase genes, two were essential: the chromosomally encoded B family, polB1, and the chromosomally encoded euryarchaeal-specific D family, polD1/D2 (formerly called polA1/polA2 in the Halobacterium sp. NRC-1 genome sequence). The pNRC200-encoded B family polymerase, polB2, was non-essential. Accessory genes for DNA replication initiation and elongation factors, including the putative replicative helicase, mcm, the eukaryotic-type DNA primase, pri1/pri2, the DNA polymerase sliding clamp, pcn, and the flap endonuclease, rad2, were all essential. Targeted genes were classified as non-essential if knockouts were obtained and essential based on statistical analysis and/or by demonstrating the inability to isolate chromosomal knockouts except in the presence of a complementing plasmid copy of the gene.

Conclusion

The results showed that ten out of nineteen eukaryotic-type DNA replication genes are essential for Halobacterium sp. NRC-1, consistent with their requirement for DNA replication. The essential genes code for two of ten Orc/Cdc6 proteins, two out of three DNA polymerases, the MCM helicase, two DNA primase subunits, the DNA polymerase sliding clamp, and the flap endonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号