首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Human α1-proteinase inhibitor (α1-PI) is the most abundant serine protease inhibitor in the blood and the heterologous expression of recombinant α1-PI has great potential for possible therapeutic applications. However, stability and functional efficacy of the recombinant protein expressed in alternate hosts are of major concern.

Methods

Five variants of plant-expressed recombinant α1-PI protein were developed by incorporating single amino acid substitutions at specific sites, namely F51C, F51L, A70G, M358V and M374I. Purified recombinant α1-PI variants were analyzed for their expression, biological activity, oxidation-resistance, conformational and thermal stability by DAC-ELISA, porcine pancreatic elastase (PPE) inhibition assays, transverse urea gradient (TUG) gel electrophoresis, fluorescence spectroscopy and far-UV CD spectroscopy.

Results

Urea-induced unfolding of recombinant α1-PI variants revealed that the F51C mutation shifted the mid-point of transition from 1.4 M to 4.3 M, thus increasing the conformational stability close to the human plasma form, followed by F51L, A70G and M374I variants. The variants also exhibited enhanced stability for heat denaturation, and the size-reducing substitution at Phe51 slowed down the deactivation rate ~ 5-fold at 54 °C. The M358V mutation at the active site of the protein did not significantly affect the conformational or thermal stability of the recombinant α1-PI but provided enhanced resistance to oxidative inactivation.

Conclusions

Our results suggest that single amino acid substitutions resulted in improved stability and oxidation-resistance of the plant-derived recombinant α1-PI protein, without inflicting the inhibitory activity of the protein.

General significance

Our results demonstrate the significance of engineered modifications in plant-derived recombinant α1-PI protein molecule for further therapeutic development.  相似文献   

2.
Methionine deprivation of cancer cells, which are deficient in methionine biosynthesis, has been envisioned as a therapeutic strategy to reduce cancer cell viability. Methionine γ-lyase (MGL), an enzyme that degrades methionine, has been exploited to selectively remove the amino acid from cancer cell environment. In order to increase MGL catalytic activity, we performed sequence and structure conservation analysis of MGLs from various microorganisms. Whereas most of the residues in the active site and at the dimer interface were found to be conserved, residues located in the C-terminal flexible loop, forming a wall of the active site entry channel, were found to be variable. Therefore, we carried out site-saturation mutagenesis at four independent positions of the C-terminal flexible loop, P357, V358, P360 and A366 of MGL from Citrobacter freundii, generating libraries that were screened for activity. Among the active variants, V358Y exhibits a 1.9-fold increase in the catalytic rate and a 3-fold increase in KM, resulting in a catalytic efficiency similar to wild type MGL. V358Y cytotoxic activity was assessed towards a panel of cancer and nonmalignant cell lines and found to exhibit IC50 lower than the wild type. The comparison of the 3D-structure of V358Y MGL with other MGL available structures indicates that the C-terminal loop is either in an open or closed conformation that does not depend on the amino acid at position 358. Nevertheless, mutations at this position allosterically affects catalysis.  相似文献   

3.
Methotrexate is a slow, tight-binding, competitive inhibitor of human dihydrofolate reductase (hDHFR), an enzyme that provides key metabolites for nucleotide biosynthesis. In an effort to better characterize ligand binding in drug resistance, we have previously engineered hDHFR variant F31R/Q35E. This variant displays a >650-fold decrease in methotrexate affinity, while maintaining catalytic activity comparable to the native enzyme. To elucidate the molecular basis of decreased methotrexate affinity in the doubly substituted variant, we determined kinetic and inhibitory parameters for the simple variants F31R and Q35E. This demonstrated that the important decrease of methotrexate affinity in variant F31R/Q35E is a result of synergistic effects of the combined substitutions. To better understand the structural cause of this synergy, we obtained the crystal structure of hDHFR variant F31R/Q35E complexed with methotrexate at 1.7-Å resolution. The mutated residue Arg-31 was observed in multiple conformers. In addition, seven native active-site residues were observed in more than one conformation, which is not characteristic of the wild-type enzyme. This suggests that increased residue disorder underlies the observed methotrexate resistance. We observe a considerable loss of van der Waals and polar contacts with the p-aminobenzoic acid and glutamate moieties. The multiple conformers of Arg-31 further suggest that the amino acid substitutions may decrease the isomerization step required for tight binding of methotrexate. Molecular docking with folate corroborates this hypothesis.Human dihydrofolate reductase (hDHFR)6 catalyzes the reduction of 7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate in a NADPH-dependent manner. 5,6,7,8-Tetrahydrofolate is a cofactor in purine and thymidylate biosynthesis, which are essential metabolites in cell division and proliferation. As a consequence of its essential role in nucleoside biosynthesis, hDHFR has been extensively exploited as a drug target. Inhibition with folate antagonists, or antifolates, arrests cell proliferation. The most effective clinical antifolate to date is methotrexate (MTX (Fig. 1)), a slow, tight-binding competitive inhibitor that displays high affinity for hDHFR (KiMTX = 3.4 pm). MTX is currently used to treat a variety of diseases, including cancer (13), and autoimmune diseases such as juvenile idiopathic arthritis (4). A number of resistance mechanisms to MTX have been observed in cancer patients, including impaired transport of MTX to the cytoplasm (5) and decreased retention of MTX in the cell (6). Numerous ex vivo studies have reported mutations in the hDHFR gene resulting in an enzyme variant with decreased affinity for MTX (7, 8). These have contributed to increase our understanding of the molecular basis for active-site discrimination between the substrate, DHF, and its competitive inhibitor, MTX. Understanding the molecular interactions that affect tight binding of MTX to the active site of DHFR will contribute to our understanding of antifolate binding to DHFR, which can in turn contribute to the design of more efficient inhibitors.Open in a separate windowFIGURE 1.Chemical structures of hDHFR ligands. Atom numbering is shown on DHF.A considerable number of DHFR active-site variants have been identified in MTX-resistant cancer cell lines (although never in patients) (9) or engineered in vitro to elucidate the role of active site residues in the binding of MTX. Amino acid substitutions at residues Ile-7 (10), Leu-22 (11, 12), Phe-31 (13), Phe-34 (14), Arg-70 (15), and Val-115 (16) have yielded MTX-resistant variants. These residues are all present in the folate-binding pocket (17). Because MTX and DHF bind to the active site of hDHFR in a similar manner, all known substitutions causing a decrease in MTX affinity also decrease DHF affinity and overall catalytic efficiency (7, 16, 18). However, the loss of DHF affinity and catalytic efficiency is generally smaller than the loss of MTX affinity. This is often attributed to formation of different contacts with either ligand due to the 180° inversion of the pterin ring of bound DHF relative to MTX (17, 19).Crystal structures of MTX-resistant point mutants have offered insight into the causes of decreased binding of MTX or other antifolates (17, 2024). To this day, crystal structures of MTX-resistant hDHFR variants L22F, L22R, and L22Y (12), as well as F31G and F31S (25), complexed to various antifolates, have been reported. Only the L22Y variant has been co-crystallized with MTX. Despite its decreased affinity for MTX (L22Y KiMTX = 11 nm versus WT KiMTX < 31 pm (18)), the inhibitor in the variant structure was bound in the same way as in the native enzyme, making interpretation of decreased affinity difficult to assess. Nonetheless, the low probability conformation of residue Tyr-22 suggested that the presence of a bulky aromatic residue in this area of the folate-binding pocket generated unfavorable hydrophobic interactions with the 2,4-diaminopterin moiety of the inhibitor (12). This is also expected to reduce DHF substrate binding. Structures of MTX-resistant variants F31G and F31S were obtained complexed to N-[4-[(2,4-diaminofuro[2,3-d]pyrimidin-5-yl)methyl]methylamino]benzoyl]-l-glutamate (MTXO) (25), a MTX analog in which the 2,4–2,4-diaminopterin moiety is replaced by a 2,4-diaminofuropyrimidine moiety. Superposition of MTXO-bound variants with MTX-bound WT hDHFR revealed that the ligands bind to the active site in an analogous manner. It was suggested that decreased MTX binding in the substituted variants resulted from the loss of van der Waals and hydrophobic contacts established between the native Phe-31 and the p-ABA and 2,4-diaminopterin moieties of MTX. F31G and F31S display a 10-fold decrease in affinity for MTX relative to WT hDHFR (KiMTX < 31 pm (18)). Further Phe-31 variants (i.e. F31R; KiMTX = 7 nm, 200-fold decrease in MTX affinity) (10) display larger decreases in affinity relative to F31G and F31S. This cannot be rationalized by reduction of side-chain contacts with the inhibitor due to the presence of a smaller side chain.These results illustrate the difficulty of gaining insight into the molecular causes for altered MTX binding. This may be partly attributed to the very tight binding of MTX to the native enzyme, such that binding to resistant variants often remains in the sub-nanomolar or low nanomolar range, where the general mode of ligand binding has not changed appreciably relative to the native enzyme. Combining active-site mutations in hDHFR by protein engineering has been shown to generate variants with greatly decreased affinity to MTX (18, 26). Studying the molecular interactions in highly MTX-resistant hDHFR variants offers the possibility of capturing more important changes in enzyme-ligand interactions.Here, we report detailed observations for the mode of MTX resistance in the combinatorial variant F31R/Q35E. Variant F31R/Q35E is a relevant candidate for better understanding the specific interactions that govern ligand recognition in the folate binding site, because it displays a >650-fold decrease in MTX affinity (KiMTX = 21 nm) accompanied by a modest, 9-fold decrease of affinity for the substrate DHF relative to WT hDHFR (18). In addition, we have recently shown that this variant is an efficient selectable marker for various mammalian cell types, including murine hematopoietic stem cells (18).7 Because mutations giving rise to MTX resistance are not observed in mammals, and because MTX is approved for human treatment, engineered resistant DHFRs offer great potential as human selective markers ex vivo or in vivo (10, 27, 28). To better understand the effect of either amino acid substitution on each ligand, a kinetic double mutant cycle was constructed with the simple variants F31R and Q35E. The crystal structure of the F31R/Q35E variant was obtained with bound MTX at 1.7-Å resolution, to elucidate the structural basis of MTX resistance in this variant. In addition, molecular docking was performed with the F31R/Q35E structure to evaluate the role of the two substitutions toward folate binding. Overall, the results reveal synergistic effects of the combined substitutions toward loss of MTX binding, characterized by increased disorder of specific residues throughout the active site of the highly MTX-resistant F31R/Q35E variant.  相似文献   

4.
The effects of associative nitrogen fixer Azospirillum lipoferum strain 137 and root nodule bacteria Sinorhizobium meliloti after combined and separate inoculation of alfalfa seedlings on the background of mineral nitrogen applied at various times were studied. It was demonstrated that exudates of the alfalfa seedlings with the first pair of cotyledonary leaves already provide a high activity of these bacteria in the rhizosphere. To 74.6% of the introduced nitrate was transformed into N2O when the binary preparation of these bacteria was used. In an extended experiment (30 days), an active reduction of nitrates to N2O with inhibition of nitrogen fixation was observed in all of the experimental variants during the formation of legume-rhizobial and associative symbioses and simultaneous introduction of nitrates and bacteria. The most active enzyme fixation was observed in the case of a late (after 14 days) application of nitrates in the variants with both separate inoculations and inoculation with the binary preparation of A. lipoferum and S. meliloti. Separation in time of the application of bacterial preparations and mineral nitrogen assisted its preservation in all of the experimental variants. The variant of alfalfa inoculation with the binary preparation of A. lipoferum and S. meliloti and application of nitrates 2 weeks after inoculation was optimal for active nitrogen fixation (224.7 C2H4 nmol/flask · 24 h) and low denitrification activity (1.8 μmol N2O/flask · 24 h). These results are useful in applied developments aimed at the use of bacterial and mineral fertilizers for leguminous plants.  相似文献   

5.
The hyperpolarization-activated cyclic nucleotide-modulated channel gene family (HCN1-4) encodes the membrane depolarizing current that underlies pacemaking. Although the topology of HCN resembles Kv channels, much less is known about their structure-function correlation. Previously, we identified several pore residues in the S5-P linker and P-loop that are externally accessible and/or influence HCN gating, and proposed an evolutionarily conserved pore-to-gate mechanism. Here we sought dynamic evidence by assessing the functional consequences of Cys-scanning substitutions in the unexplored P-S6 linker (residues 352–359), the HCN1-R background (that is, resistant to sulfhydryl-reactive agents). None of A352C, Q353C, A354C, P355C, V356C, S357C, M358C, or S359C produced functional currents; the loss-of-function of Q353C, A354C, S357C, and M358C could be rescued by the reducing agent dithiothreitol. Q353C, A354C, and S357C, but not M358C and HCN1-R, were sensitive to Cd2+ blockade (IC50 = 3–12 μM vs. >1 mM). External application of the positively charged covalent sulfhydryl modifier MTSET irreversibly reduced I −140mV of Q353C and A354C to 27.9 ± 3.4% and 58.2 ± 13.1% of the control, respectively, and caused significant steady-state activation shifts (∆V 1/2 = –21.1 ± 1.6 for Q353C and −10.0 ± 2.9 mV for A354C). Interestingly, MTSET reactivity was also state dependent. MTSET, however, affected neither S357C nor M358C, indicating site specificity. Collectively, we have identified novel P-S6 residues whose extracellular accessibility was sterically and state dependent and have provided the first functional evidence consistent with a dynamic HCN pore-to-gate model.  相似文献   

6.

Background

Haemoglobin Roma [β115(G17)Ala → Val] is a new adult haemoglobin variant found in a patient presenting a mild hypochromia and microcytosis. We studied this previously uncharacterised variant in order to evaluate the effect on the structural and funcional properties of the Ala → Val substitution at the α1β1 interface.

Methods and results

The variant chain was identified by direct DNA sequencing of the β-globin gene, which revealed a GCC → GTC mutation in codon 115. This mutation was confirmed by mass spectrometric analysis of the tetramers and peptides. The oxygen-binding properties of the haemoglobin A/haemoglobin Roma mixture, in which the variant makes up 25% of the haemoglobins, showed a significant increase in oxygen affinity with respect to normal haemoglobin A, both in the absence and presence of 2,3-bisphosphoglycerate. The role of the βG17 position, situated at the α1β1 interface, has been examined using computational models of haemoglobin Roma and other known βG17 variants, in comparison with normal haemoglobin A.

Conclusions

This study suggests that the β115(G17)Ala → Val substitution at the α1β1 interface is responsible for increased oxygen affinity and mild destabilisation of the haemoglobin Roma.

General significance

An amino acid substitution at the G17 position of the α1β1 interface may result in stabilisation of the high affinity R-state of the haemoglobin molecule.  相似文献   

7.
Interaction between duodenase (a granase family member) from bovine duodenal mucosa and recombinant antichymotrypsin (rACT) and its P1 variants has been studied. Association rate constants (k a) were 11, 6.8, and 17 mM?1·sec?1 for rACT, ACT L358M, and ACT L358R, respectively. Natural antitrypsin (AT) compared to ACT was a 20 times more effective duodenase inhibitor (in terms of k a). Duodenase interacted with P1 variants of ACT via a suicide mechanism with stoichiometry of the process SI = 1.2. The nature of the P1 residue of the inhibitor did not influence the interaction if other residues did not meet conformational requirements of the duodenase substrate-binding pocket. Also, interaction of duodenase with ACT variants containing residues from AT reaction center loop (rACT P2-P3′, rACT P3-P4′, rACT P4-P3′, and rACT P6-P4′) was studied. The inhibition type ([E]0 = 1·10?7 M, 25°C) was revealed to be reversible-like, and efficacy of inhibition decreased with increase in the substituted part of the reactive center loop. Constants of inhibition (K i) were measured. Efficacy of interaction between the enzyme (duodenase) and inhibitor depends on topochemical correspondence between a substrate-binding pocket of the enzyme and substrate structure.  相似文献   

8.
A gene encoding an enzyme similar to a pyrroloquinoline quinone (PQQ)-dependent sugar dehydrogenase from filamentous fungi, which belongs to new auxiliary activities (AA) family 12 in the CAZy database, was cloned from Pseudomonas aureofaciens. The deduced amino acid sequence of the cloned enzyme showed only low homology to previously characterized PQQ-dependent enzymes, and multiple-sequence alignment analysis showed that the enzyme lacks one of the three conserved arginine residues that function as PQQ-binding residues in known PQQ-dependent enzymes. The recombinant enzyme was heterologously expressed in an Escherichia coli expression system for further characterization. The UV-visible (UV-Vis) absorption spectrum of the oxidized form of the holoenzyme, prepared by incubating the apoenzyme with PQQ and CaCl2, revealed a broad peak at approximately 350 nm, indicating that the enzyme binds PQQ. With the addition of 2-keto-d-glucose (2KG) to the holoenzyme solution, a sharp peak appeared at 331 nm, attributed to the reduction of PQQ bound to the enzyme, whereas no effect was observed upon 2KG addition to authentic PQQ. Enzymatic assay showed that the recombinant enzyme specifically reacted with 2KG in the presence of an appropriate electron acceptor, such as 2,6-dichlorophenol indophenol, when PQQ and CaCl2 were added. 1H nuclear magnetic resonance (1H-NMR) analysis of reaction products revealed 2-keto-d-gluconic acid (2KGA) as the main product, clearly indicating that the recombinant enzyme oxidizes the C-1 position of 2KG. Therefore, the enzyme was identified as a PQQ-dependent 2KG dehydrogenase (Pa2KGDH). Considering the high substrate specificity, the physiological function of Pa2KGDH may be for production of 2KGA.  相似文献   

9.

Background

The melanocortin 4 receptor (MC4R) critically regulates feeding and satiety. Rare variants in MC4R are predominantly found in obese individuals. Though some rare variants in MC4R discovered in patients have defects in localization, ligand binding and signaling to cAMP, many have no recognized defects.

Subjects/Methods

In our cohort of 1433 obese subjects that underwent Roux-en-Y Gastric Bypass (RYGB) surgery, we found fifteen variants of MC4R. We matched rare variant carriers to patients with the MC4R reference alleles for gender, age, starting BMI and T2D to determine the variant effect on weight-loss post-RYGB. In vitro, we determined expression of mutant receptors by ELISA and western blot, and cAMP production by microscopy.

Results

While carrying a rare MC4R allele is associated with obesity, carriers of rare variants exhibited comparable weight-loss after RYGB to non-carriers. However, subjects carrying three of these variants, V95I, I137T or L250Q, lost less weight after surgery. In vitro, the R305Q mutation caused a defect in cell surface expression while only the I137T and C326R mutations showed impaired cAMP signaling. Despite these apparent differences, there was no correlation between in vitro signaling and pre- or post-surgery clinical phenotype.

Conclusions

These data suggest that subtle differences in receptor signaling conferred by rare MC4R variants combined with additional factors predispose carriers to obesity. In the absence of complete MC4R deficiency, these differences can be overcome by the powerful weight-reducing effects of bariatric surgery. In a complex disorder such as obesity, genetic variants that cause subtle defects that have cumulative effects can be overcome after appropriate clinical intervention.  相似文献   

10.

Background

Common single nucleotide polymorphisms (SNPs) in proprotein convertase subtilisin/kexin type 1 with modest effects on PC1/3 in vitro have been associated with obesity in five genome-wide association studies and with diabetes in one genome-wide association study. We here present a novel SNP and compare its biosynthesis, secretion and catalytic activity to wild-type enzyme and to SNPs that have been linked to obesity.

Methodology/Principal Findings

A novel PC1/3 variant introducing an Arg to Gln amino acid substitution at residue 80 (within the secondary cleavage site of the prodomain) (rs1799904) was studied. This novel variant was selected for analysis from the 1000 Genomes sequencing project based on its predicted deleterious effect on enzyme function and its comparatively more frequent allele frequency. The actual existence of the R80Q (rs1799904) variant was verified by Sanger sequencing. The effects of this novel variant on the biosynthesis, secretion, and catalytic activity were determined; the previously-described obesity risk SNPs N221D (rs6232), Q665E/S690T (rs6234/rs6235), and the Q665E and S690T SNPs (analyzed separately) were included for comparative purposes. The novel R80Q (rs1799904) variant described in this study resulted in significantly detrimental effects on both the maturation and in vitro catalytic activity of PC1/3.

Conclusion/Significance

Our findings that this novel R80Q (rs1799904) variant both exhibits adverse effects on PC1/3 activity and is prevalent in the population suggests that further biochemical and genetic analysis to assess its contribution to the risk of metabolic disease within the general population is warranted.  相似文献   

11.
Acetolactate synthase (ALS, EC 4. 1.3. 18), the first enzyme in the biosynthesis of branched-chain amino acids, was isolated from wild-type and sulfonylurea-resistant Datura innoxia cell variants and characterized. Apparent Km values of the ALS for pyruvate from three sulfonylurea-resistant variants (CSR2, CSR6, and CSR10) were manyfold greater than that of the wild type. The inhibition of wild-type and herbicide-resistant ALS activity by chlorsulfuron (CS), a sulfonylurea herbicide, and l-leucine (l-Leu), one of the feedback inhibitors of the enzyme, was examined. ALS from two CS-resistant variants exhibited severalfold greater resistance to CS than did the wild-type enzyme. Inhibition of ALS by l-Leu fitted a partially competitive pattern most closely. It is proposed that the herbicide resistance mutation accentuated the partial inhibition characteristics of ALS by l-Leu. ALS from one of the two CS-resistant variants (CSR6) had a Ki for l-Leu an order of magnitude greater than that of the wild-type enzyme. The alterations in kinetic properties observed in the ALS from sulfonylurea-resistant variants are discussed in relation to the possible evolutionary significance of the herbicide binding site of this enzyme, the physiological effects of such biochemical alterations, and their practical utility in genetic studies.  相似文献   

12.

Objective

To isolate and characterize the kinetics of variants of E. coli β-glucuronidase (GUS) having altered substrate specificity.

Results

Two small combinatorial libraries of E. coli GUS variants were constructed and screened for improved activities towards the substrate p-nitrophenyl-β-d-galactoside (pNP-gal). Nine of the most active variants were purified and their kinetic parameters were determined. These variants show up to 134-fold improved kcat/KM value towards pNP-gal compared to wild-type GUS, up to 9 × 108-fold shift in specificity from p-nitrophenyl-β-d-glucuronide (pNP-glu) to pNP-gal compared to wild-type, and 103-fold increase in specificity shift compared to a previously evolved GUS variant.

Conclusions

The kinetic data collected for nine new GUS variants is invaluable for training computational protein design models that better predict amino acid substitutions which improve activity of enzyme variants having altered substrate specificity.
  相似文献   

13.
The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu232 in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu232 being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu232 of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme.  相似文献   

14.

Purpose of work

We have elucidated the significance of three key amino acid residues of l-aspartate α-decarboxylase that act remotely from its cleavage site for its functional self-cleavage as well as for its catalytic activity. These results provide useful fundamental information for engineering l-aspartate α-decarboxylase. l-Aspartate α-decarboxylase (ADC) from Corynebacterium glutamicum, and encoded by panD, was cloned and expressed in Escherichia coli and then purified. Three amino acid residues were found to be related to ADC self-cleavage. Mutating R3 to either A, Q, N, L, D, or E produced only the unprocessed pro-enzyme. Although mutating R54 and Y58 into A or K and A or T, respectively, partly influenced ADC self-cleavage, the specific activity of each of the four ßmutants decreased to 3.5, 4, 2.4, and 2.6 U mg?1, respectively, compared with a specific activity of 690 U mg?1 for the wild-type enzyme. Thus, R3 triggers ADC self-cleavage and completes the modification of the active site with assistance by R54 and Y58. These results will help to engineer ADC for improved industrial applications.  相似文献   

15.
In Escherichia coli and Salmonella typhimurium about 80% of the dUMP used for dTMP synthesis is derived from deamination of dCTP. The dCTP deaminase produces dUTP that subsequently is hydrolyzed by dUTPase to dUMP and diphosphate. The dCTP deaminase is regulated by dTTP that inhibits the enzyme by binding to the active site and induces an inactive conformation of the trimeric enzyme. We have analyzed the role of residues previously suggested to play a role in catalysis. The mutant enzymes R115Q, S111C, S111T and E138D were all purified and analyzed for activity. Only S111T and E138D displayed detectable activity with a 30- and 140-fold reduction in kcat, respectively. Furthermore, S111T and E138D both showed altered dTTP inhibition compared to wild-type enzyme. S111T was almost insensitive to the presence of dTTP. With the E138D enzyme the dTTP dependent increase in cooperativity of dCTP saturation was absent, although the dTTP inhibition itself was still cooperative. Modeling of the active site of the S111T enzyme indicated that this enzyme is restricted in forming the inactive dTTP binding conformer due to steric hindrance by the additional methyl group in threonine. The crystal structure of E138D in complex with dUTP showed a hydrogen bonding network in the active site similar to wild-type enzyme. However, changes in the hydrogen bond lengths between the carboxylate and a catalytic water molecule as well as a slightly different orientation of the pyrimidine ring of the bound nucleotide may provide an explanation for the reduced activity.  相似文献   

16.
The P2X7 receptor exhibits significant allelic polymorphism in humans, with both loss and gain of function variants potentially impacting on a variety of infectious and inflammatory disorders. At least five loss-of-function polymorphisms (G150R, R307Q, T357S, E496A, and I568N) and two gain-of-function polymorphisms (H155Y and Q460R) have been identified and characterized to date. In this study, we used RT-PCR cloning to isolate and characterize P2X7 cDNA clones from human PBMCs and THP-1 cells. A previously unreported variant with substitutions of V80M and A166G was identified. When expressed in HEK293 cells, this variant exhibited heightened sensitivity to the P2X7 agonist (BzATP) relative to the most frequent allele, as shown by pore formation measured by fluorescent dye uptake into cells. Mutational analyses showed that A166G alteration was critical for the gain-of-function change, while V80M was not. Full-length variants with multiple previously identified nonsynonymous SNPs (H155Y, H270R, A348T, and E496A) were also identified. Distinct functional phenotypes of the P2X7 variants or mutants constructed with multiple polymorphisms were observed. Gain-of-function variations (A166G or H155Y) could not rescue the loss-of-function E496A polymorphism. Synergistic effects of the gain-of-function variations were also observed. We also identified the A348T alteration as a weak gain-of-function variant. Thus, these results identify the new gain-of-function variant A166G and demonstrate that multiple-gene polymorphisms contribute to functional phenotypes of the human P2X7 receptor. Furthermore, the results demonstrate that the C-terminal of the cysteine-rich domain 1 of P2X7 is critical for regulation of P2X7-mediated pore formation.  相似文献   

17.
The major heat shock protein of 70,000 Mr in Drosophila melanogaster is encoded by two variant gene types located, respectively, at the chromosomal sites 87A7 and 87C1. We present the DNA sequence of a complete hsp702 gene of the 87A7 type and of the adjacent regions from both variants, extending to 1·2 × 103 bases upstream from the start of the messenger coding region. We find an untranslated region of 250 nucleotides at the 5′ end of the messenger coding sequence in both variants. There is only one open reading frame which allows coding of a 70,000 Mr protein within the 87A7 variant, as found for an 87C1 variant (Ingolia et al., 1980). We observe 4·2% nucleotide divergence between these two variants with complete conservation of the reading frame. There is a conserved sequence of 355 nucleotides in front of each hsp70 gene, which is 85% homologous between the two variants. The presence of the same sequence element in γ, in front of the αβ heat shock genes (R. W. Hackett & J. T. Lis, personal communication) suggests that this element contains the regulatory signals for the coordinate expression of both the hsp70 and the αβ heat shock genes. Finally we find a very A + T-rich sequence of 150 basepairs which is highly conserved (91·8%) 0·6 × 103 bases upstream from two hps70 gene variants.  相似文献   

18.
Substrate specificity is one of the most important functional property of enzymes. We use family 10 xylanase from Streptomyces olivaceoviridis as a model for substrate specificity of glycoside hydrolases. Seven variants were initially designed to change the preference from xylose to glucose at substrate binding subsites ?2 and ?1. The known mobility of Trp at the ?1 subsite and the influence of its environment, which is different in subset 1 and subset 2 family 10 enzymes, were taken into account in variant design. Q88A/R275A had the best ratio of p-nitrophenyl cellobioside vs p-nitrophenyl xylobioside hydrolyzing activity in the first series of variants. The crystal structure shows a movement of Trp274 compared to the native, as a result of loss of interaction with the long side chain of Arg275. The movement creates extra space for the hydroxymethyl of glucose, resulting in improved Km on glucose derived substrates, while the negative effect on kcat is compensated by the Q88A mutation, which also contributes to a further reduction of Km. Further mutagenesis based on the Q88A/R275A variant resulted in 5.2 times improvement compared to the wild-type p-nitrophenyl cellobioside hydrolyzing activity, which is the best improvement obtained so far for an engineered xylanase.  相似文献   

19.
Drug-induced long-QT syndrome (diLQTS) is often due to drug block of IKr, especially in genetically susceptible patients with subclinical mutations in the IKr-encoding KCHN2. Few variants in the cardiac NaV1.5 Na+ channel complex have been associated with diLQTS. We tested whether a novel SNTA1 (α1-syntrophin) variant (p.E409Q) found in a patient with diLQTS increases late sodium current (INa-L), thereby providing a disease mechanism. Electrophysiological studies were performed in HEK293T cells co-expressing human NaV1.5/nNOS/PMCA4b with either wild type (WT) or SNTA1 variants (A390V-previously reported in congenital LQTS; and E409Q); and in adult rat ventricular cardiomyocytes infected with SNTA1 expressing adenoviruses (WT or one of the two SNTA1 variants). In HEK293T cells and in cardiomyocytes, there was no significant difference in the peak INa densities among the SNTA1 WT and variants. However, both variants increased INa-L (% of peak current) in HEK293T cells (0.58±0.10 in WT vs. 0.90±0.11 in A390V, p = 0.048; vs. 0.88±0.07 in E409Q, p = 0.023). In cardiomyocytes, INa-L was significantly increased by E409Q, but not by A390V compared to WT (0.49±0.14 in WT vs.0.94±0.23 in A390V, p = 0.099; vs. 1.12±0.24 in E409Q, p = 0.019). We demonstrated that a novel SNTA1 variant is likely causative for diLQTS by augmenting INa-L. These data suggest that variants within the NaV1.5-interacting α1-syntrophin are a potential mechanism for diLQTS, thereby expanding the concept that variants within congenital LQTS loci can cause diLQTS.  相似文献   

20.
《Endocrine practice》2022,28(9):859-866
Objective5α-Reductase type 2 (5α-RD2) deficiency causes variable degrees of undervirilization in patients. The correlation between its genotype and phenotype is unclear.MethodsWe retrospectively evaluated 103 patients with 46,XY disorders of sex development who were diagnosed with 5α-RD2 deficiency.ResultsThe prevalence of female sex assignment (P = .008) and the incidences of cryptorchidism (P = .0003) and bifid scrotum (P = .0002) in the non-p.R227Q variant group were higher, but there were no significant differences in the incidences of hypospadias and isolated microphallus. The external masculinization score in the non-p.R227Q variant group was lower than that in the homozygous p.R227Q variant (P = .019) and compound heterozygous p.R227Q variant groups (P = .013). The level of anti-Mullerian hormone in the non-p.R227Q variant group was lower than that in the homozygous p.R227Q variant (P < .001) and compound heterozygous p.R227Q variant groups (P = .006). The testosterone-to-dihydrotestosterone ratio of the homozygous p.R227Q variant group was higher than that of the non-p.R227Q variant (P = .018) and compound heterozygous p.R227Q variant groups (P = .029). Twenty-three reportedly pathogenic variants and 11 novel steroid 5α-reductase 2 (SRD5A2) variants were identified.ConclusionCompared with patients without p.R227Q, patients with p.R227Q exhibited higher external masculinization scores and anti-Mullerian hormone expression, a lower prevalence of female sex assignment, and lower incidences of cryptorchidism and bifid scrotum. We identified 23 reportedly pathogenic SRD5A2 variants and 11 novel SRD5A2 variants that led to 5α-RD2 deficiency. We established a genotype-phenotype correlation, and patients with p.R227Q showed a relatively mild phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号