首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid density functional theory with the B3LYP functional has been used to investigate the catalytic mechanism of catechol oxidase. Catechol oxidase belongs to a class of enzymes that has a copper dimer with histidine ligands at the active site. Another member of this class is tyrosinase, which has been studied by similar methods previously. An important advantage for the present study compared to the one for tyrosinase is that X-ray crystal structures exist for catechol oxidase. The most critical step in the mechanism for catechol oxidase is where the peroxide O–O bond is cleaved. In the suggested mechanism this cleavage occurs in concert with a proton transfer from the substrate. Shortly after the transition state is passed there is another proton transfer from the substrate, which completes the formation of a water molecule. An important feature of the mechanism, like the one for tyrosinase, is that no proton transfers to or from residues outside the metal complex are needed. The calculated energetics is in reasonable agreement with experiments. Comparisons are made to other similar enzymes studied previously.  相似文献   

2.
Nine phenolic compounds were metabolized by the soft rot fungus Lecythophora hoffmannii via protocatechuic acid and subsequently cleaved by protocatechuate 3,4-dioxygenase as determined by oxygen uptake, substrate depletion, and ring cleavage analysis. Catechol was metabolized by catechol 1,2-dioxygenase. Fungal utilization of these aromatic compounds may be important in the metabolism of wood decay products.  相似文献   

3.
The effects of metal ions on cytokinin oxidase activity extracted from callus tissues of Phaseolus vulgaris L. cv Great Northern have been examined using an assay based on the oxidation of N6-(Δ2-isopentenyl)-adenine-2,8-3H (i6 Ade) to adenine (Ade). The addition of cupric ions to reaction mixtures containing imidazole buffer markedly enhanced cytokinin oxidase activity. In the presence of optimal concentrations of copper and imidazole, cytokinin oxidase activity was stimulated more than 20-fold. The effect was enzyme dependent, specific for copper, and observed only in the presence of imidazole. The substrate specificity of the copper-imidazole enhanced reaction, as judged by substrate competition tests, was the same as that observed in the absence of copper and imidazole. Similarly, in tests involving DEAE-cellulose chromatography, elution profiles of cytokinin oxidase activity determined using a copper-imidazole enhanced assay were identical to those obtained using an assay without copper and imidazole. On the basis of these results, the addition of copper and imidazole to reaction mixtures used to assay for cytokinin oxidase activity is judged to provide a reliable and specific assay of greatly enhanced sensitivity for the enzyme. The mechanism by which copper and imidazole enhance cytokinin oxidase activity is not certain, but the reaction catalyzed by the enzyme was not inhibited by anaerobic conditions when these reagents were present. This observation suggests that copper-imidazole complexes are substituting for oxygen in the reaction mechanism by which cytokinin oxidase effects cleavage of the N6-side chain of i6Ade.  相似文献   

4.
Catechol oxidases (EC 1.10.3.1) catalyse the oxidation of o-diphenols to their corresponding o-quinones. These oxidases contain two copper ions (CuA and CuB) within the so-called coupled type 3 copper site as found in tyrosinases (EC 1.14.18.1) and haemocyanins. The crystal structures of a limited number of bacterial and fungal tyrosinases and plant catechol oxidases have been solved. In this study, we present the first crystal structure of a fungal catechol oxidase from Aspergillus oryzae (AoCO4) at 2.5-Å resolution. AoCO4 belongs to the newly discovered family of short-tyrosinases, which are distinct from other tyrosinases and catechol oxidases because of their lack of the conserved C-terminal domain and differences in the histidine pattern for CuA. The sequence identity of AoCO4 with other structurally known enzymes is low (less than 30 %), and the crystal structure of AoCO4 diverges from that of enzymes belonging to the conventional tyrosinase family in several ways, particularly around the central α-helical core region. A diatomic oxygen moiety was identified as a bridging molecule between the two copper ions CuA and CuB separated by a distance of 4.2–4.3 Å. The UV/vis absorption spectrum of AoCO4 exhibits a distinct maximum of absorbance at 350 nm, which has been reported to be typical of the oxy form of type 3 copper enzymes.  相似文献   

5.
The intrinsic and inducible phenoloxidase (PO) activity of Rapana thomasiana hemocyanin (RtH) and its substructures were studied. With catechol as substrate, a weak o-diPO activity was measured for the didecameric RtH and its subunits. Some activation of the o-diPO activity of RtH was achieved by limited treatment with subtilisin and by incubation of RtH with 2.9 mM sodium dodecyl sulphate (SDS), suggesting an enhanced substrate access to the active sites. The highest artificial induction of o-diPO activity in RtH, however, was obtained by lyophilization of the protein. This is ascribed to conformational changes during the lyophilization process of the didecameric RtH molecules, affecting the accessibility of the active sites. These conformational changes must be very small, since Fourier-transform infrared and circular dichroism spectroscopies did not reveal any changes in secondary structure of lyophilized RtH. The difference in accessibility of the copper containing active site for substrates between catechol oxidase and functional unit RtH2-e was demonstrated by molecular modeling and surface area accessibility calculations. The low level of intrinsic PO activity in the investigated hemocyanin is related to the inaccessibility of the binuclear copper active sites to the substrates.  相似文献   

6.
Hemocyanin and phenoloxidase belong to the type-3 copper protein family, sharing a similar active center whereas performing different roles. In this study, we demonstrated that purified hemocyanin (450 kDa) from the spiny lobster Panulirus argus shows phenoloxidase activity in vitro after treatment with trypsin, chymotrypsin and SDS (0.1% optimal concentration), but it is not activated by sodium perchlorate or isopropanol. The optimal pHs of the SDS-activated hemocyanin were 5.5 and 7.0. Hemocyanin from spiny lobster behaves as a catecholoxidase. Kinetic characterization using dopamine, L-DOPA and catechol shows that dopamine is the most specific substrate. Catechol and dopamine produced substrate inhibition above 16 and 2 mM respectively. Mechanism-based inhibition was also evidenced for the three substrates, being less significant for L-DOPA. SDS-activated phenoloxidase activity is produced by the hexameric hemocyanin. Zymographic analysis demonstrated that incubation of native hemocyanin with trypsin and chymotrypsin, produced bands of 170 and 190 kDa respectively, with intense phenoloxidase activity. Three polypeptide chains of 77, 80 and 89 kDa of hemocyanin monomers were identified by SDS-PAGE. Monomers did not show phenoloxidase activity induced by SDS or partial proteolysis.  相似文献   

7.
Catechol and catecholamines have been assayed upon the microsomal NADPH and NADH oxidase activities. Epinephrine shows a catalytic effect on the NADPH oxidation characterized by a small lag. The two to threefold increase in rate can be suppressed by Superoxide dismutase if the enzyme is added before the reaction begins. The catalytic effect is ascribed to a quinone formed by two electron oxidation of epinephrine by the Superoxide ion. The quinone, which is not catalytically active in the NADH chain, appears to mediate electrons between the NADPH-cytochrome c reductase and oxygen. The four electron oxidation product adrenochrome is also active upon the NADPH chain but inactive upon the NADH chain.Epinephrine did not change the menadione-stimulated NADPH oxidase activity. Presumably, during this and the NADH oxidase activities, two electrons are simultaneously transferred to the oxygen molecule.Catechol and catecholamines doubled the rate of autoxidation of NADH in the presence of catalytic amounts of NADH-cytochrome b5 reductase and cytochrome b5, a result which suggests Superoxide ion formation in the autoxidation of the cytochrome.Epinephrine does not act upon the desaturation of endogenous substrate or upon endogenous lipid peroxidation.  相似文献   

8.
Steady-state kinetics of Acremonium sp. HI-25 ascorbate oxidase toward p-hydroquinone derivatives have been examined by using an electrochemical analysis based on the theory of steady-state bioelectrocatalysis. The electrochemical technique has enabled one to examine the influence of electronic and chemical properties of substrates on the activity. It was proven that the oxidative activity of ascorbate oxidase was dominated by the highly selective substrate-binding affinity based on electrostatic interaction beyond the one-electron redox potential difference between ascorbate oxidase’s type 1 copper site and substrate.  相似文献   

9.
Protector-II (Pr-II) of the Japanese morning glory (Pharbitis nil Choisy) was inactivated by exposure to polyphenol oxidase. An unidentified protector in the same molecular weight range obtained from sunflower was also inactivated by this enzyme. Earlier speculations that protectors might be lipoprotein in nature were negated by the fact that neither lipase nor protease inactivated the protectors. The protectors were also not inactivated by incubating with α-amylase, DNase, or RNase. Catechol mimics Pr and is inactivated by polyphenol oxidase. The oxidation of catechol to o-quinone is accompanied by a loss of chromophores that absorb ultraviolet light and the appearance of a reddish brown color. Similarly, when the relatively low molecular weight auxin protectors (Pr-II class) were incubated with polyphenol oxidase, their oxidation was also frequently associated with the formation of brown color, and oxidation with H2O2 caused a loss of ultraviolet-absorbing chromophores. The data indicate that auxin protectors contain o-dihydroxyphenolic groups at their active site.  相似文献   

10.
The gastropod mollusc, Oncomelania hupensis is a unique intermediate host for the human parasite Schistosoma japonicum. It is a primary factor for the epidemic of schistosomiasis and its distribution is consistent with the epidemic area of schistosomiasis. Here we report the functional properties of hemocyanin of O. hupensis (OhH), a copper-containing respiratory protein which was isolated from its hemolymph and purified by ammonium sulfate fractionation and ultracentrifugation. We identified the protein characters including UV absorption at 340 nm, copper content and quaternary structure. Furthermore, by induction of phenoloxidase and enzyme-linked immunosorbent assay we show that OhH exhibited o-diphenoloxidase activity after limited proteolysis, and shared carbohydrate epitopes with glycoconjugates of S. japonicum.  相似文献   

11.
BMP4 is synthesized as an inactive precursor that is cleaved at two sites during maturation: initially at a site (S1) adjacent to the ligand domain, and then at an upstream site (S2) within the prodomain. Cleavage at the second site regulates the stability of mature BMP4 and this in turn influences its signaling intensity and range of action. The Drosophila ortholog of BMP4, Dpp, functions as a long- or short-range signaling molecule in the wing disc or embryonic midgut, respectively but mechanisms that differentially regulate its bioactivity in these tissues have not been explored. In the current studies we demonstrate, by dpp mutant rescue, that cleavage at the S2 site of proDpp is required for development of the wing and leg imaginal discs, whereas cleavage at the S1 site is sufficient to rescue Dpp function in the midgut. Both the S1 and S2 sites of proDpp are cleaved in the wing disc, and S2-cleavage is essential to generate sufficient ligand to exceed the threshold for pMAD activation at both short- and long-range in most cells. By contrast, proDpp is cleaved at the S1 site alone in the embryonic mesoderm and this generates sufficient ligand to activate physiological target genes in neighboring cells. These studies provide the first biochemical and genetic evidence that selective cleavage of the S2 site of proDPP provides a tissue-specific mechanism for regulating Dpp activity, and that differential cleavage can contribute to, but is not an absolute determinant of signaling range.  相似文献   

12.
Bruce C. Hill  Diann Andrews 《BBA》2012,1817(6):948-954
SCO (synthesis of cytochrome c oxidase) proteins are involved in the assembly of the respiratory chain enzyme cytochrome c oxidase acting to assist in the assembly of the CuA center contained within subunit II of the oxidase complex. The CuA center receives electrons from the reductive substrate ferrocytochrome c, and passes them on to the cytochrome a center. Cytochrome a feeds electrons to the oxygen reaction site composed of cytochrome a3 and CuB. CuA consists of two copper ions positioned within bonding distance and ligated by two histidine side chains, one methionine, a backbone carbonyl and two bridging cysteine residues. The complex structure and redox capacity of CuA present a potential assembly challenge. SCO proteins are members of the thioredoxin family which led to the early suggestion of a disulfide exchange function for SCO in CuA assembly, whereas the copper binding capacity of the Bacillus subtilis version of SCO (i.e., BsSCO) suggests a direct role for SCO proteins in copper transfer. We have characterized redox and copper exchange properties of apo- and metalated-BsSCO. The release of copper (II) from its complex with BsSCO is best achieved by reducing it to Cu(I). We propose a mechanism involving both disulfide and copper exchange between BsSCO and the apo-CuA site. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

13.
Respiratory burst oxidase homologs (RBOHs) catalyze the reduction of oxygen to generate superoxide anion, a kind of reactive oxygen species (ROS). The ROS produced by RBOHs play essential roles in diverse processes, such as root hair development, stomata closure and signaling mechanisms in response to abiotic stimuli and during plant-pathogen interactions. Recently, we found that PvRbohB silencing in transgenic Phaseolus vulgaris roots had a negative impact on lateral root density. In this work, we show that the downregulation of PvRbohB affects both the growth and ROS levels in recently emerged lateral roots. In addition, we found that the PvRbohB promoter was activated during lateral root primordium initiation in the pericycle, and remained active throughout lateral root development. This study identifies RBOHs as potentially important players in lateral root development in P. vulgaris.  相似文献   

14.
The ability of 19 structural analogs of propyl gallate to inhibit purified soybean seed (Glycine max [L.] Merr. var. Ransom) lipoxygenase-2 (EC 1.13.11.12) was determined. The results indicate that the o-dihydroxy and not the ester function of propyl gallate is essential for inhibition of lipoxygenase. Catechol thus represents the minimum inhibitory structure. Among those compounds possessing an o-dihydroxy function, the Ki′ for inhibition of lipoxygenase is directly related to the lipophilicity of the inhibitor as measured by the octanol-water partition coefficient. The structural features of propyl gallate necessary for inhibition of lipoxygenase were found to differ from those required for inhibition of the plant mitochondrial alternative pathway. This further supports the concept that the alternative oxidase and lipoxygenase are functionally distinct species.  相似文献   

15.
Tyramine, an important plant intermediate, was found to be a substrate for two proteins, a copper amine oxidase and a peroxidase from Euphorbia characias latex. The oxidation of tyramine took place by two different mechanisms: oxidative deamination to p-hydroxyphenylacetaldehyde by the amine oxidase and formation of di-tyramine by the peroxidase. The di-tyramine was further oxidized at the two amino groups by the amino oxidase, whereas p-hydroxyphenylacetaldehyde was transformed to di-p-hydroxyphenylacetaldehyde by the peroxidase. Data obtained in this study indicate a new interesting scenario in the metabolism of tyramine.  相似文献   

16.
Correct positioning of neurotransmitter-gated receptors at postsynapses is essential for synaptic transmission. At Caenorhabditis elegans neuromuscular junctions, clustering of levamisole-sensitive acetylcholine receptors (L-AChRs) requires the muscle-secreted scaffolding protein LEV-9, a multidomain factor containing complement control protein (CCP) modules. Here we show that LEV-9 needs to be cleaved at its C terminus to exert its function. LEV-9 cleavage is not required for trafficking nor secretion but directly controls scaffolding activity. The cleavage site is evolutionarily conserved, and post-translational cleavage ensures the structural and functional decoupling between different isoforms encoded by the lev-9 gene. Data mining indicates that most human CCP-containing factors are likely cleaved C-terminally from CCP tandems, suggesting that not only domain architectures but also cleavage location can be conserved in distant architecturally related proteins.  相似文献   

17.
DNA was found to be cleaved by arenes and copper(II) salts in neutral solutions. The efficiency of this reaction is comparable with the DNA cleavage by such systems as Cu(II)–phenanthroline and Cu(II)–ascorbic acid in efficiency, but, unlike them, it does not require the presence of an exogenous reducing agent or hydrogen peroxide. The Cu2+–arene system does not cleave DNA under anaerobic conditions. Catalase, sodium azide as well as bathocuproine, a specific chelator of Cu(I), completely inhibit the reaction. Our results suggest that Cu(I) ions, superoxide radical and singlet oxygen participate in this reaction. It was shown by EPR and spin traps that the reaction proceeds with the formation of alkoxyl radicals capable of inducing breaks in DNA molecules. An efficient cleavage of DNA in the Cu(II)–o-bromobenzoic acid system requires the generation of radicals under the conditions of formation of a specific copper–DNA–o-bromobenzoic acid complex, in which copper ions are likely to be coordinated with oxygen atoms of the DNA phosphate groups.  相似文献   

18.
Prokaryotic toxin–antitoxin loci encode mRNA cleaving enzymes that inhibit translation. Two types are known: those that cleave mRNA codons at the ribosomal A site and those that cleave any RNA site specifically. RelE of Escherichia coli cleaves mRNA at the ribosomal A site in vivo and in vitro but does not cleave pure RNA in vitro. RelE exhibits an incomplete RNase fold that may explain why RelE requires its substrate mRNA to presented by the ribosome. In contrast, RelE homologue YoeB has a complete RNase fold and cleaves RNA independently of ribosomes in vitro. Here, we show that YoeB cleavage of mRNA is strictly dependent on translation of the mRNA in vivo. Non-translated model mRNAs were not cleaved whereas the corresponding wild-type mRNAs were cleaved efficiently. Model mRNAs carrying frameshift mutations exhibited a YoeB-mediated cleavage pattern consistent with the reading frameshift thus giving strong evidence that YoeB cleavage specificity was determined by the translational reading frame. In contrast, site-specific mRNA cleavage by MazF occurred independently of translation. In one case, translation seriously influenced MazF cleavage efficiency, thus solving a previous apparent paradox. We propose that translation enhances MazF-mediated cleavage of mRNA by destabilization of the mRNA secondary structure.  相似文献   

19.
Edward A. Berry  Dong-Woo Lee  Kazuo Nagai 《BBA》2010,1797(3):360-7281
Ascochlorin is an isoprenoid antibiotic that is produced by the phytopathogenic fungus Ascochyta viciae. Similar to ascofuranone, which specifically inhibits trypanosome alternative oxidase by acting at the ubiquinol binding domain, ascochlorin is also structurally related to ubiquinol. When added to the mitochondrial preparations isolated from rat liver, or the yeast Pichia (Hansenula) anomala, ascochlorin inhibited the electron transport via CoQ in a fashion comparable to antimycin A and stigmatellin, indicating that this antibiotic acted on the cytochrome bc1 complex. In contrast to ascochlorin, ascofuranone had much less inhibition on the same activities. On the one hand, like the Qi site inhibitors antimycin A and funiculosin, ascochlorin induced in H. anomala the expression of nuclear-encoded alternative oxidase gene much more strongly than the Qo site inhibitors tested. On the other hand, it suppressed the reduction of cytochrome b and the generation of superoxide anion in the presence of antimycin A3 in a fashion similar to the Qo site inhibitor myxothiazol. These results suggested that ascochlorin might act at both the Qi and the Qo sites of the fungal cytochrome bc1 complex. Indeed, the altered electron paramagnetic resonance (EPR) lineshape of the Rieske iron-sulfur protein, and the light-induced, time-resolved cytochrome b and c reduction kinetics of Rhodobacter capsulatus cytochrome bc1 complex in the presence of ascochlorin demonstrated that this inhibitor can bind to both the Qo and Qi sites of the bacterial enzyme. Additional experiments using purified bovine cytochrome bc1 complex showed that ascochlorin inhibits reduction of cytochrome b by ubiquinone through both Qi and Qo sites. Moreover, crystal structure of chicken cytochrome bc1 complex treated with excess ascochlorin revealed clear electron densities that could be attributed to ascochlorin bound at both the Qi and Qo sites. Overall findings clearly show that ascochlorin is an unusual cytochrome bc1 inhibitor that acts at both of the active sites of this enzyme.  相似文献   

20.
In reoxidation experiments with cytochrome c oxidase (EC 1.9.3.1) in the presence of both reducing substrate and molecular oxygen, a new EPR signal from Cu2+ has been observed. The new signal corresponds to 0.45 Cu per functional unit. It is concluded that the new EPR signal originates from Cu2+B, the copper which is EPR-nondetectable in the resting enzyme.Optical absorption changes in the 500–700 nm region accompanies the decay of the new Cu2+ EPR signal.Based on the results in this investigation a catalytic cycle for cytochrome oxidase is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号