首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Biotin is an essential enzyme cofactor that acts as a CO2 carrier in carboxylation and decarboxylation reactions. The E. coli genome encodes a biosynthetic pathway that produces biotin from pimeloyl-CoA in four enzymatic steps. The final step, insertion of sulfur into desthiobiotin to form biotin, is catalyzed by the biotin synthase, BioB. A dedicated biotin ligase (BirA) catalyzes the covalent attachment of biotin to biotin-dependent enzymes. Isotopic labeling has been a valuable tool for probing the details of the biosynthetic process and assaying the activity of biotin-dependent enzymes, however there is currently no established method for 35S labeling of biotin.  相似文献   

2.
Like in the case of higher plants, algal growth and development are controlled by the hormonal regulatory system. Essentially all known phytohormones were identified in various algal taxa, and the range of their physiological activities was confirmed. At the same time, our knowledge of enzymes involved in the phytohormone synthesis in algae is rather limited. Data concerning genes encoding these enzymes are still more fragmentary. Current data about proteomes of some algae allow the revealing of amino acid sequences with homology to those of the higher plant enzymes and their conserved domains.  相似文献   

3.
Closing in on complete pathways of biotin biosynthesis   总被引:1,自引:0,他引:1  
Biotin is an enzyme cofactor indispensable to metabolic fixation of carbon dioxide in all three domains of life. Although the catalytic and physiological roles of biotin have been well characterized, the biosynthesis of biotin remains to be fully elucidated. Studies in microbes suggest a two-stage biosynthetic pathway in which a pimelate moiety is synthesized and used to begin assembly of the biotin bicyclic ring structure. The enzymes involved in the bicyclic ring assembly have been studied extensively. In contrast the synthesis of pimelate, a seven carbon α,ω-dicarboxylate, has long been an enigma. Support for two different routes of pimelate synthesis has recently been obtained in Escherichia coli and Bacillus subtilis. The E. coli BioC-BioH pathway employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes whereas the B. subtilis BioI-BioW pathway utilizes oxidative cleavage of fatty acyl chains. Both pathways produce the pimelate thioester precursor essential for the first step in assembly of the fused rings of biotin. The enzymatic mechanisms and biochemical strategies of these pimelate synthesis models will be discussed in this review.  相似文献   

4.
The photorespiratory pathway was shown to be essential for organisms performing oxygenic photosynthesis, cyanobacteria, algae, and plants, in the present day O(2)-containing atmosphere. The identification of a plant-like 2-phosphoglycolate cycle in cyanobacteria indicated that not only genes of oxygenic photosynthesis but also genes encoding photorespiratory enzymes were endosymbiotically conveyed from ancient cyanobacteria to eukaryotic oxygenic phototrophs. Here, we investigated the origin of the photorespiratory pathway in photosynthetic eukaryotes by phylogenetic analysis. We found that a mixture of photorespiratory enzymes of either cyanobacterial or α-proteobacterial origin is present in algae and higher plants. Three enzymes in eukaryotic phototrophs clustered closely with cyanobacterial homologs: glycolate oxidase, glycerate kinase, and hydroxypyruvate reductase. On the other hand, the mitochondrial enzymes of the photorespiratory cycle in algae and plants, glycine decarboxylase subunits and serine hydroxymethyltransferase, evolved from proteobacteria. Other than most genes for proteins of the photosynthetic machinery, nearly all enzymes involved in the 2-phosphogylcolate metabolism coexist in the genomes of cyanobacteria and heterotrophic bacteria.  相似文献   

5.
Protein disulfide isomerases (PDIs) are eukaryotic oxidoreductases essential for oxidative protein folding. Their diversity in photosynthetic organisms was assessed by analyzing 24 sequenced genomes belonging to algal, lycophyte, bryophyte and angiosperm phyla. This phylogenetic analysis led to an updated classification into 9 classes (PDI-A to -F, -L, -M and -S) which differed by the number of Trx domains and the presence of additional domains (D, COPII, J and ARMET). From an evolutionary perspective, the distribution and protein architecture of PDIs differ considerably between algae and terrestrial plants, 5 PDI classes are common whereas 1 is specific to terrestrial plants and 3 to algae. Some algal PDI-Fs possess selenocysteine residues. The PDI family is larger in mammals (19 members in human) than in land plants (around 10 members) and Saccharomyces cerevisiae (5 members). However, PDIs from photosynthetic organisms display an important structural and functional diversity considering their association to specific protein domains.  相似文献   

6.
Plastids (photosynthetic organelles of plants and algae) are known to have spread between eukaryotic lineages by secondary endosymbiosis, that is, by the uptake of a eukaryotic alga by another eukaryote. But the number of times this has taken place is controversial. This is particularly so in the case of eukaryotes with plastids derived from red algae, which are numerous and diverse. Despite their diversity, it has been suggested that all these eukaryotes share a recent common ancestor and that their plastids originated in a single endosymbiosis, the so-called "chromalveolate hypothesis." Here we describe a novel molecular character that supports the chromalveolate hypothesis. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic and Calvin cycle enzyme that exists as two nonhomologous types, class I and class II. Red algal plastid-targeted FBA is a class I enzyme related to homologues from plants and green algae, and it would be predicted that the plastid-targeted FBA from algae with red algal secondary endosymbionts should be related to this class I enzyme. However, we show that plastid-targeted FBA of heterokonts, cryptomonads, haptophytes, and dinoflagellates (all photosynthetic chromalveolates) are class II plastid-targeted enzymes, completely unlike those of red algal plastids. The chromalveolate enzymes form a strongly supported group in FBA phylogeny, and their common possession of this unexpected plastid characteristic provides new evidence for their close relationship and a common origin for their plastids.  相似文献   

7.
Biotin, which functions as an essential cofactor for certain carboxylases and decarboxylases, is synthesized by a multistep pathway in microorganisms and plants. Biotin biosynthesis has not been studied in detail in mycobacteria. In this study, we isolated a mutant of Mycobacterium marinum in which MMAR_2770, a previously uncharacterized gene encoding a predicted short-chain dehydrogenase/reductase, was inactivated. We found that this mutant is a biotin auxotroph that cannot grow in a minimal medium (Sauton) unless biotin is supplemented. Complementation of the mutant with an intact MMAR_2770 or its homolog Rv1882c of Mycobacterium tuberculosis restored the growth of the mutant, suggesting that MMAR_2770 is involved in biotin biosynthesis. We further showed that the mutant was unable to grow in cultured macrophages and was attenuated in zebrafish. Taken together, our results demonstrate that biotin biosynthesis is essential for the growth of mycobacteria in vitro and in vivo and have provided validation for targeting biotin biosynthetic enzymes for antimycobacterial drug development. The potential role of MMAR_2770 in mycobacterial biotin biosynthesis is discussed.  相似文献   

8.
Biotin, thiamine, and lipoic acid are industrially important molecules naturally synthesized by microorganisms via biosynthetic pathways requiring iron-sulfur (FeS) clusters. Current production is exclusively by chemistry because pathway complexity hinders development of fermentation processes. For biotin, the main bottleneck is biotin synthase, BioB, a S-adenosyl methionine-dependent radical enzyme that converts dethiobiotin (DTB) to biotin. BioB overexpression is toxic, though the mechanism remains unclear. We identified single mutations in the global regulator IscR that substantially improve cellular tolerance to BioB overexpression, increasing Escherichia coli DTB-to-biotin biocatalysis by more than 2.2-fold. Based on proteomics and targeted overexpression of FeS-cluster biosynthesis genes, FeS-cluster depletion is the main reason for toxicity. We demonstrate that IscR mutations significantly affect cell viability and improve cell factories for de novo biosynthesis of thiamine by 1.3-fold and lipoic acid by 1.8-fold. We illuminate a novel engineering target for enhancing biosynthesis of complex FeS-cluster-dependent molecules, paving the way for industrial fermentation processes.  相似文献   

9.
Biotin functions as a covalently bound cofactor of biotindependent carboxylases. Biotin attachment is catalyzed by biotin protein ligases, called holocarboxylase synthetase in mammals and BirA in prokaryotes. These enzymes show a high degree of sequence similarity in their biotinylation domains but differ markedly in the length and sequence of their N terminus. BirA is also the repressor of the biotin operon, and its DNA attachment site is located in its N terminus. The function of the eukaryotic N terminus is unknown. Holocarboxylase synthetase with N- and C-terminal deletions were evaluated for the ability to catalyze biotinylation after expression in Escherichia coli using bacterial and human acceptor substrates. We showed that the minimum functional protein is comprised of the last 349 of the 726-residue protein, which includes the biotinylation domain. Significantly, enzyme containing intermediate length, N-terminal deletions interfered with biotin transfer and interaction with different peptide acceptor substrates. We propose that the N terminus of holocarboxylase synthetase contributes to biotinylation through N- and C-terminal interactions and may affect acceptor substrate recognition. Our findings provide a rationale for the biotin responsiveness of patients with point mutations in the N-terminal sequence of holocarboxylase synthetase. Such mutant enzyme may respond to biotin-mediated stabilization of the substrate-bound complex.  相似文献   

10.
Pinon V  Ravanel S  Douce R  Alban C 《Plant physiology》2005,139(4):1666-1676
Biochemical and molecular characterization of the biotin biosynthetic pathway in plants has dealt primarily with biotin synthase. This enzyme catalyzing the last step of the pathway is localized in mitochondria. Other enzymes of the pathway are however largely unknown. In this study, a genomic-based approach allowed us to clone an Arabidopsis (Arabidopsis thaliana) cDNA coding 7-keto-8-aminopelargonic acid (KAPA) synthase, the first committed enzyme of the biotin synthesis pathway, which we named AtbioF. The function of the enzyme was demonstrated by functional complementation of an Escherichia coli mutant deficient in KAPA synthase reaction, and by measuring in vitro activity. Overproduction and purification of recombinant AtbioF protein enabled a thorough characterization of the kinetic properties of the enzyme and a spectroscopic study of the enzyme interaction with its substrates and product. This is the first characterization of a KAPA synthase reaction in eukaryotes. Finally, both green fluorescent protein-targeting experiments and western-blot analyses showed that the Arabidopsis KAPA synthase is present in cytosol, thus revealing a unique compartmentation of the plant biotin synthesis, split between cytosol and mitochondria. The significance of the complex compartmentation of biotin synthesis and utilization in the plant cell and its potential importance in the regulation of biotin metabolism are also discussed.  相似文献   

11.
A Picciocchi  R Douce  C Alban 《Plant physiology》2001,127(3):1224-1233
Biotin synthase, encoded by the bio2 gene in Arabidopsis, catalyzes the final step in the biotin biosynthetic pathway. The development of radiochemical and biological detection methods allowed the first detection and accurate quantification of a plant biotin synthase activity, using protein extracts from bacteria overexpressing the Arabidopsis Bio2 protein. Under optimized conditions, the turnover number of the reaction was >2 h(-1) with this in vitro system. Purified Bio2 protein was not efficient by itself in supporting biotin synthesis. However, heterologous interactions between the plant Bio2 protein and bacterial accessory proteins yielded a functional biotin synthase complex. Biotin synthase in this heterologous system obeyed Michaelis-Menten kinetics with respect to dethiobiotin (K(m) = 30 microM) and exhibited a kinetic cooperativity with respect to S-adenosyl-methionine (Hill coefficient = 1.9; K(0.5) = 39 microM), an obligatory cofactor of the reaction. In vitro inhibition of biotin synthase activity by acidomycin, a structural analog of biotin, showed that biotin synthase reaction was the specific target of this inhibitor of biotin synthesis. It is important that combination experiments using purified Bio2 protein and extracts from pea (Pisum sativum) leaf or potato (Solanum tuberosum) organelles showed that only mitochondrial fractions could elicit biotin formation in the plant-reconstituted system. Our data demonstrated that one or more unidentified factors from mitochondrial matrix (pea and potato) and from mitochondrial membranes (pea), in addition to the Bio2 protein, are obligatory for the conversion of dethiobiotin to biotin, highlighting the importance of mitochondria in plant biotin synthesis.  相似文献   

12.
Cellulose, a microfibrillar polysaccharide consisting of bundles of beta-1,4-glucan chains, is a major component of plant and most algal cell walls and is also synthesized by some prokaryotes. Seed plants and bacteria differ in the structures of their membrane terminal complexes that make cellulose and, in turn, control the dimensions of the microfibrils produced. They also differ in the domain structures of their CesA gene products (the catalytic subunit of cellulose synthase), which have been localized to terminal complexes and appear to help maintain terminal complex structure. Terminal complex structures in algae range from rosettes (plant-like) to linear forms (bacterium-like). Thus, algal CesA genes may reveal domains that control terminal complex assembly and microfibril structure. The CesA genes from the alga Mesotaenium caldariorum, a member of the order Zygnematales, which have rosette terminal complexes, are remarkably similar to seed plant CesAs, with deduced amino acid sequence identities of up to 59%. In addition to the putative transmembrane helices and the D-D-D-QXXRW motif shared by all known CesA gene products, M. caldariorum and seed plant CesAs share a region conserved among plants, an N-terminal zinc-binding domain, and a variable or class-specific region. This indicates that the domains that characterize seed plant CesAs arose prior to the evolution of land plants and may play a role in maintaining the structures of rosette terminal complexes. The CesA genes identified in M. caldariorum are the first reported for any eukaryotic alga and will provide a basis for analyzing the CesA genes of algae with different types of terminal complexes.  相似文献   

13.
14.
Heme biosynthesis represents one of the most essential metabolic pathways in living organisms, providing the precursors for cytochrome prosthetic groups, photosynthetic pigments, and vitamin B(12). Using genomic data, we have compared the heme pathway in the diatom Thalassiosira pseudonana and the red alga Cyanidioschyzon merolae to those of green algae and higher plants, as well as to those of heterotrophic eukaryotes (fungi, apicomplexans, and animals). Phylogenetic analyses showed the mosaic character of this pathway in photosynthetic eukaryotes. Although most of the algal and plant enzymes showed the expected plastid (cyanobacterial) origin, at least one of them (porphobilinogen deaminase) appears to have a mitochondrial (alpha-proteobacterial) origin. Another enzyme, glutamyl-tRNA synthase, obviously originated in the eukaryotic nucleus. Because all the plastid-targeted sequences consistently form a well-supported cluster, this suggests that genes were either transferred from the primary endosymbiont (cyanobacteria) to the primary host nucleus shortly after the primary endosymbiotic event or replaced with genes from other sources at an equally early time, i.e., before the formation of three primary plastid lineages. The one striking exception to this pattern is ferrochelatase, the enzyme catalyzing the first committed step to heme and bilin pigments. In this case, two red algal sequences do not cluster either with the other plastid sequences or with cyanobacterial sequences and appear to have a proteobacterial origin like that of the apicomplexan parasites Plasmodium and Toxoplasma. Although the heterokonts also acquired their plastid via secondary endosymbiosis from a red alga, the diatom has a typical plastid-cyanobacterial ferrochelatase. We have not found any remnants of the plastidlike heme pathway in the nonphotosynthetic heterokonts Phytophthora ramorum and Phytophthora sojae.  相似文献   

15.
Abstract Red algae are one of the main photosynthetic eukaryotic lineages and are characterized by primitive features, such as a lack of flagella and the presence of phycobiliproteins in the chloroplast. Recent molecular phylogenetic studies using nuclear gene sequences suggest two conflicting hypotheses (monophyly versus non-monophyly) regarding the relationships between red algae and green plants. Although kingdom-level phylogenetic analyses using multiple nuclear genes from a wide-range of eukaryotic lineages were very recently carried out, they used highly divergent gene sequences of the cryptomonad nucleomorph (as the red algal taxon) or incomplete red algal gene sequences. In addition, previous eukaryotic phylogenies based on nuclear genes generally included very distant archaebacterial sequences (designated as the outgroup) and/or amitochondrial organisms, which may carry unusual gene substitutions due to parasitism or the absence of mitochondria. Here, we carried out phylogenetic analyses of various lineages of mitochondria-containing eukaryotic organisms using nuclear multigene sequences, including the complete sequences from the primitive red alga Cyanidioschyzon merolae. Amino acid sequence data for two concatenated paralogous genes (α- and β-tubulin) from mitochondria-containing organisms robustly resolved the basal position of the cellular slime molds, which were designated as the outgroup in our phylogenetic analyses. Phylogenetic analyses of 53 operational taxonomic units (OTUs) based on a 1525-amino-acid sequence of four concatenated nuclear genes (actin, elongation factor-1α, α-tubulin, and β-tubulin) reliably resolved the phylogeny only in the maximum parsimonious (MP) analysis, which indicated the presence of two large robust monophyletic groups (Groups A and B) and the basal eukaryotic lineages (red algae, true slime molds, and amoebae). Group A corresponded to the Opisthokonta (Metazoa and Fungi), whereas Group B included various primary and secondary plastid-containing lineages (green plants, glaucophytes, euglenoids, heterokonts, and apicomplexans), Ciliophora, Kinetoplastida, and Heterolobosea. The red algae represented the sister lineage to Group B. Using 34 OTUs for which essentially the entire amino acid sequences of the four genes are known, MP, distance, quartet puzzling, and two types of maximum likelihood (ML) calculations all robustly resolved the monophyly of Group B, as well as the basal position of red algae within eukaryotic organisms. In addition, phylogenetic analyses of a concatenated 4639-amino-acid sequence for 12 nuclear genes (excluding the EF-2 gene) of 12 mitochondria-containing OTUs (including C. merolae) resolved a robust non-sister relationship between green plants and red algae within a robust monophyletic group composed of red algae and the eukaryotic organisms belonging to Group B. A new scenario for the origin and evolution of plastids is suggested, based on the basal phylogenetic position of the red algae within the large clade (Group B plus red algae). The primary plastid endosymbiosis likely occurred once in the common ancestor of this large clade, and the primary plastids were subsequently lost in the ancestor(s) of the Discicristata (euglenoids, Kinetoplastida, and Heterolobosea), Heterokontophyta, and Alveolata (apicomplexans and Ciliophora). In addition, a new concept of “Plantae” is proposed for phototrophic and nonphototrophic organisms belonging to Group B and red algae, on the basis of the common history of the primary plastid endosymbiosis. The Plantae include primary plastid-containing phototrophs and nonphototrophic eukaryotes that possibly contain genes of cyanobacterial origin acquired in the primary endosymbiosis.  相似文献   

16.
Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms.  相似文献   

17.
Ma Y  Yuan L  Wu B  Li X  Chen S  Lu S 《Journal of experimental botany》2012,63(7):2809-2823
Terpenoids are the largest class of plant secondary metabolites and have attracted widespread interest. Salvia miltiorrhiza, belonging to the largest and most widely distributed genus in the mint family, is a model medicinal plant with great economic and medicinal value. Diterpenoid tanshinones are the major lipophilic bioactive components in S. miltiorrhiza. Systematic analysis of genes involved in terpenoid biosynthesis has not been reported to date. Searching the recently available working draft of the S. miltiorrhiza genome, 40 terpenoid biosynthesis-related genes were identified, of which 27 are novel. These genes are members of 19 families, which encode all of the enzymes involved in the biosynthesis of the universal isoprene precursor isopentenyl diphosphate and its isomer dimethylallyl diphosphate, and two enzymes associated with the biosynthesis of labdane-related diterpenoids. Through a systematic analysis, it was found that 20 of the 40 genes could be involved in tanshinone biosynthesis. Using a comprehensive approach, the intron/exon structures and expression patterns of all identified genes and their responses to methyl jasmonate treatment were analysed. The conserved domains and phylogenetic relationships among the deduced S. miltiorrhiza proteins and their homologues isolated from other plant species were revealed. It was discovered that some of the key enzymes, such as 1-deoxy-D-xylulose 5-phosphate synthase, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, hydroxymethylglutaryl-CoA reductase, and geranylgeranyl diphosphate synthase, are encoded by multiple gene members with different expression patterns and subcellular localizations, and both homomeric and heteromeric geranyl diphosphate synthases exist in S. miltiorrhiza. The results suggest the complexity of terpenoid biosynthesis and the existence of metabolic channels for diverse terpenoids in S. miltiorrhiza and provide useful information for improving tanshinone production through genetic engineering.  相似文献   

18.
The vital function of mitochondrial alternative oxidase(AOX) pathway in optimizing photosynthesis during plant de-etiolation has been well recognized. However, whether and how AOX impacts the chloroplast biogenesis in algal cells remains unclear. In the present study, the role of AOX in regulating the reassembly of chloroplast in algal cells was investigated by treating Auxenochlorella protothecoides with salicylhydroxamic acid(SHAM), the specific inhibitor to AOX, in the heterotrophy to autotrophy transition process. Several lines of evidences including delayed chlorophyll accumulation, lagged reorganization of chloroplast structure, altered PSI/PSII stoichiometry, and declined photosynthetic activities in SHAM treated cells indicated that the impairment in AOX activity dramatically hindered the development of functioning chloroplast in algal cells. Besides, the cellular ROS levels and activities of antioxidant enzymes were increased by SHAM treatment, and the perturbation on the balance of NAD~+/NADH and NADP~+/NADPH ratios was also observed in A. protothecoides lacking AOX activity, indicating that AOX was essential in promoting ROS scavenging and keeping the redox homeostasis for algal chloroplast development during greening. Overall, our study revealed the essentiality of mitochondrial AOX pathway in sustaining algal photosynthetic performance and provided novel insights into the physiological roles of AOX on the biogenesis of photosynthetic organelle in algae.  相似文献   

19.
Plaque-forming dsDNA (>330 kb) viruses that infect certain unicellular, eukaryotic chlorella-like green algae contain approximately 375 protein-encoding genes. These proteins include a 94 amino acid K+ channel protein, called Kcv, as well as two putative ligand-gated ion channels. The viruses also encode other proteins that could be involved in the assembly and/or function of ion channels, including protein kinases and a phosphatase, polyamine biosynthetic enzymes and histamine decarboxylase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号