共查询到20条相似文献,搜索用时 0 毫秒
1.
The within-swim pattern of cycle periods in Tritonia swimmingchanged when the behavior was repeatedly elicited suggestingthat an excitatory process reaches a ceiling or wanes over repeatedtrials. Exposure to subthreshold stimuli enhanced swimming inresponse to a subsequent super-threshold stimulus, perhaps usinga similar excitatory process. In reduced preparations, subthresholdstimuli increased action potential activity in identified serotonergicneurons. Finally, stimulating serotonergic neurons enhanceda fictive swimming pattern, much like subthreshold stimuli enhancedthe swimming behavior. Both within-swim and across-swim changesin the swimming behavior may be caused by increased activityin identified serotonergic neurons. Comparative study suggeststhat ancestral serotonergic systems facilitated network oscillationsfor the production of rhythmic behaviors such as feeding andlocomotion. This concept of serotonin as oscillatizer is usedto explain the role of serotonergic neurons in Tritonia. Implicationsfor human mental health are discussed. 相似文献
2.
Background
Theories of personality have posited an increased arousal response to external stimulation in impulsive individuals. However, there is a dearth of studies addressing the neural basis of this association.Methods
We recorded skin conductance in 26 individuals who were assessed with Barratt Impulsivity Scale (BIS-11) and performed a stop signal task during functional magnetic resonance imaging. Imaging data were processed and modeled with Statistical Parametric Mapping. We used linear regressions to examine correlations between impulsivity and skin conductance response (SCR) to salient events, identify the neural substrates of arousal regulation, and examine the relationship between the regulatory mechanism and impulsivity.Results
Across subjects, higher impulsivity is associated with greater SCR to stop trials. Activity of the ventromedial prefrontal cortex (vmPFC) negatively correlated to and Granger caused skin conductance time course. Furthermore, higher impulsivity is associated with a lesser strength of Granger causality of vmPFC activity on skin conductance, consistent with diminished control of physiological arousal to external stimulation. When men (n = 14) and women (n = 12) were examined separately, however, there was evidence suggesting association between impulsivity and vmPFC regulation of arousal only in women.Conclusions
Together, these findings confirmed the link between Barratt impulsivity and heightened arousal to salient stimuli in both genders and suggested the neural bases of altered regulation of arousal in impulsive women. More research is needed to explore the neural processes of arousal regulation in impulsive individuals and in clinical conditions that implicate poor impulse control. 相似文献3.
4.
Koldzic-Zivanovic N Seitz PK Cunningham KA Thomas ML Hughes TK 《Cellular and molecular neurobiology》2006,26(4-6):977-985
1. Aim: The role of the serotonin transporter (SERT) is to remove serotonin (5-HT) from the synaptic space. In vitro studies have shown that 5-HT uptake via SERT is influenced by the availability of its substrate, 5-HT. We used RN46A cells, a line that expresses SERT, to investigate 5-HT regulation of 5-HT uptake and the intracellular signaling pathways involved. RN46A cells also express mRNAs for 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C) and as cAMP and intracellular Ca2+ are modulated by different 5-HT receptors, we studied both pathways.2. Methods: 5-HT uptake was determined as imipramine-inhibitable uptake of [3H]5-HT, intracellular cAMP was measured by RIA and intracellular Ca2+ changes were determined using the ratiometric method of intracellular Ca2+ imaging.3. Results: For uptake experiments, cells were kept for 30 min either with or without 1 μM 5-HT in the medium before measuring uptake. Removal of 5-HT for 30 min significantly decreased [3H]5-HT uptake. The absence of 5-HT for 15 min failed to induce any changes in intracellular cAMP levels. Removal of 5-HT from the medium did not change intracellular Ca2+ levels either; however, adding 1 μM 5-HT after 5 min in 5-HT-free conditions rapidly increased intracellular Ca2+ levels in 50% of the cells. The remaining cells showed no changes in the intracellular Ca2+ levels.4. Conclusions: We have shown that in RN46A cells, that endogenously express SERT and mRNAs for several 5-HT receptors, changes in 5-HT levels influence 5-HT uptake rate as well as induce changes in intracellular Ca2+ levels. This suggests that 5-HT may utilize intracellular Ca2+ to regulate 5-HT uptake. 相似文献
5.
《Chronobiology international》2013,30(8):1121-1126
In the present study, the relationship between personality dimensions and Circadian Preference was evaluated using a structural equation modeling approach. Participants (N?=?390; 53.8% female, mean age: 26.8?±?8.1 yrs) completed measures of Circadian Preference, Impulsivity, Sensation Seeking, and the Big Five factors. A mediation structural equation model assessed the direct and indirect effects of the Big Five factors on Circadian Preference. The results showed that Impulsivity and Sensation Seeking were significantly associated with Eveningness, whereas no significant direct effects of the Big Five traits were detected once the effects of Impulsivity and Sensation Seeking were taken into account. (Author correspondence: p. russo@unibo. it) 相似文献
6.
SLC6A4 (solute carrier family 6,member 4) gene encodes a serotonin transporter (5-hydroxytryptamine transporter,HTT),which transports synaptic serotonin into presynaptic terminal.SLC6A4 is known to be the target of antidepressants such as selective serotonin reuptake inhibitors (SSRIs).Inhibition of HTT increases synaptic serotonin concentration and thereby exerts antidepressant efficacy.A large number of genetic studies suggest the contribution of genetic variations of SLC6A4 to various psychiatric disorders.The most studied genetic variation,HTT-linked polymorphic region (HTTLPR),is located at the promoter region of SLC6A4. 相似文献
7.
The review summarizes the results of long-term studies on the role of the brain neurotransmitter serotonin in genetic predisposition to various types of defensive behavior. The involvement of the serotonergic brain system in the mechanisms of genetic control of both active and passive defensive responses has been established using silver foxes, Norway rats of S40 selection for low and high aggressiveness to humans, aggressive mice with genetic knockout of monoaminoxidase A, and S40 rats selected for predisposition to passive defensive response of freezing (catalepsy). The changes in the serotonergic 5-HT1A brain receptors of rats genetically predisposed to different strategies of defensive behavior were similar. However, the activity of the key enzyme of serotonin biosynthesis and the brain structures, in which serotonin metabolism was altered, significantly differed with regard to the preferred strategy. The conclusion was drawn that the 5-HT1A receptors and enzymes of serotonin metabolism in the brain are involved in implementing genetic control of defensive behavior. Expression of the 5-HT1A brain receptors was suggested to determine the levels of fear and anxiety and, consequently, the predisposition to defensive behavior, whereas the preferred strategy of defensive response (active or passive defensive) depends on genetically determined features of serotonin metabolism in the brain structures. 相似文献
8.
The possible involvement of calcium in the regulation of retinal serotonin N-acetyltransferase (NAT) activity was investigated using eye cups of Xenopus laevis cultured in defined medium. Omitting CaCl2 from the culture medium completely inhibited the dark-dependent increase of NAT activity at night. Approximately 10(-4)-10(-3) M free Ca2+ was found to be required for the maximal increase of NAT activity in the dark. Other divalent cations--Ba2+, Sr2+, and Mn2+--did not substitute for Ca2+. Antagonists of voltage-sensitive calcium channels, including nifedipine, methoxyverapamil (D600), Co2+, and Mg2+, were found to be effective inhibitors of the dark-dependent increase of retinal NAT activity. Trifluoperazine also decreased retinal NAT activity. These studies indicate that the increase of retinal NAT activity in the dark is mediated by a specific Ca2+-dependent process and that Ca2+ influx through voltage-sensitive calcium channels is involved. 相似文献
9.
Jennifer E. Sanner Lorraine Frazier Malini Udtha 《The Yale journal of biology and medicine》2013,86(1):5-13
Platelet serotonin has been associated with depression and coronary artery
disease. Understanding the association between platelet serotonin and depressive
symptoms during acute coronary syndrome (ACS) may explain some of the ACS events
seen in depressed individuals. The objectives were to evaluate whether levels of
platelet serotonin during an ACS event differ between individuals who screen
positive or negative for depressive symptoms and to determine if a linear
relationship exists. In this cross-sectional study, data were collected on 51
patients with ACS. Multiple linear regression models were examined. Platelet
serotonin levels were not significantly different between the depressed and
non-depressed groups (β = -4.093 and p = .293); a linear relationship was not
found (β = -.254 and p = .250). In conclusion, a relationship between platelet
serotonin and depressive symptoms was not found. It remains unclear if an
association exists between platelet serotonin levels and depressive symptoms
during hospitalization for ACS. 相似文献
10.
Bondarenko N. S. Voronova S. N. Voronezhskaya E. E. Melnikova V. I. 《Doklady. Biochemistry and biophysics》2022,503(1):104-107
Doklady Biochemistry and Biophysics - The effect of mild prenatal stress in mice, leading to an increase in the placental serotonin level, on the formation of adaptive behavior in male offspring at... 相似文献
11.
12.
The Role of Growth Substances in the Regulation of Bud Dormancy 总被引:5,自引:0,他引:5
13.
We analyze the time course of 5-hydroxytryptamine (5-HT, serotonin) release from K+-depolarized hippocampal slices using a two-compartment kinetic model. The model is based on the assumptions that the rate of release is dependent on the amount of 5-HT in a releasable pool and that this pool may be resupplied during depolarization by newly synthesized 5-HT. Comparisons were made between predictions of the model and observed changes in 5-HT metabolism and in 5-HT release studied under a variety of experimental conditions. In accordance with predictions of the model, experimental manipulation of 5-HT synthesis and breakdown rates did not affect release immediately after depolarization but did affect the release rate during prolonged depolarization. Increasing bath tryptophan from 0 to 10 microM approximately doubled both 5-HT synthesis and the release rate after 40 min of K+-induced depolarization while having a smaller effect on release during the first 2 min. Inhibition of 5-HT breakdown did not significantly affect release during the first 2 min of depolarization but increased it over threefold after 40 min. In contrast, altering the concentrations of K+ or Ca2+ in the incubation medium affected mainly the early phase of 5-HT release and not the late phase. Reducing Ca2+ from 2.4 to 0.4 mM reduced 5-HT release by about 30% during the first 9 min of depolarization but did not affect release during the subsequent 30 min. Increasing the concentration of K+ from 18 to 60 mM stimulated release by sixfold during the first 2 min but only twofold after a subsequent 30 min. These results support our kinetic model and suggest that regulation of 5-HT metabolism at the site of the nerve terminal could be a mechanism for modulation of 5-HT release during prolonged discharge of serotonergic neurons. 相似文献
14.
《Biophysical journal》2020,118(4):944-956
G protein-coupled receptors (GPCRs) are important membrane proteins in higher eukaryotes that carry out a vast array of cellular signaling and act as major drug targets. The serotonin1A receptor is a prototypical member of the GPCR family and is implicated in neuropsychiatric disorders such as anxiety and depression, besides serving as an important drug target. With an overall goal of exploring the functional consequence of altered receptor dynamics, in this work, we probed the role of the actin cytoskeleton in the dynamics, ligand binding, and signaling of the serotonin1A receptor. We monitored receptor dynamics utilizing single particle tracking, which provides information on relative distribution of receptors in various diffusion modes in addition to diffusion coefficient. We show here that the short-term diffusion coefficient of the receptor increases upon actin destabilization by cytochalasin D. In addition, analysis of individual trajectories shows that there are changes in relative populations of receptors undergoing various types of diffusion upon actin destabilization. The release of dynamic constraint was evident by an increase in the radius of confinement of the receptor upon actin destabilization. The functional implication of such actin destabilization was manifested as an increase in specific agonist binding and downstream signaling, monitored by measuring reduction in cellular cAMP levels. These results bring out the interdependence of GPCR dynamics with cellular signaling. 相似文献
15.
A new insight into the mechanisms underlying implementation of genomic information in the individual development of eukaryotes through interactions of transposons with epigenetic factors dynamically changing during each cell division is described. These mechanisms of stepwise implementation of individual genetic information with characteristic stage- and tissue-specific features in the activities of certain mobile genetic element families are evolutionarily fixed at the species level. In addition, the individual differences caused by their “unscheduled” transpositions can significantly change the regulatory network of the genome altering the phenotype. These changes in individual development can bring about new traits leading to either a disease or better fitness and represent an important component of the variation for natural selection in evolution. A large part of the eukaryotic transposons is altered by mutations and used for formation of the regulatory gene network, changes in the protein-coding genes, and emergence of new nonprotein-coding genes. When inserted into new loci, mobile genetic elements form the basis for microRNA and the domain structures of long noncoding RNA, responding to various types of stress; this is reflected in the specific features of individual development and contributes to variation. The epigenetic factors, including noncoding RNA, DNA methylation, and histone modifications, are tightly associated with mobile genetic elements. The specific features in transposon location in individuals that have emerged owing to spontaneous mutations or those caused by stress impacts can considerably change the interactions in gene networks. This influences the likelihood of survival under changing environmental conditions and reflects a distinct interrelation between the mechanisms of individual development and evolution. There is a parallelism between the mechanisms underlying the rearrangements of genomes caused by transposons in evolution and in individual development. In particular, the responsiveness of transposons to external and internal (microenvironment) factors forms the background for evolutionary construction of transposon-mediated tissue-specific activation patterns of certain transposons during each cell division, which leads to maturation of a reproductive organism. This mechanism is based on tight stage- and tissuespecific interrelation between transposons, epigenetic factors, and protein-coding genes. 相似文献
16.
Proteolytic processing of the amyloid precursor protein (APP) by the β- and γ-secretases releases the amyloid-β peptide (Aβ), which deposits in senile plaques and contributes to the etiology of Alzheimer''s disease (AD). The α-secretase cleaves APP in the Aβ peptide sequence to generate soluble APPα (sAPPα). Upregulation of α-secretase activity through the 5-hydroxytryptamine 4 (5-HT4) receptor has been shown to reduce Aβ production, amyloid plaque load and to improve cognitive impairment in transgenic mouse models of AD. Consequently, activation of 5-HT4 receptors following agonist stimulation is considered to be a therapeutic strategy for AD treatment; however, the signaling cascade involved in 5-HT4 receptor-stimulated proteolysis of APP remains to be determined. Here we used chemical and siRNA inhibition to identify the proteins which mediate 5-HT4d receptor-stimulated α-secretase activity in the SH-SY5Y human neuronal cell line. We show that G protein and Src dependent activation of phospholipase C are required for α-secretase activity, while, unexpectedly, adenylyl cyclase and cAMP are not involved. Further elucidation of the signaling pathway indicates that inositol triphosphate phosphorylation and casein kinase 2 activation is also a prerequisite for α-secretase activity. Our findings provide a novel route to explore the treatment of AD through 5-HT4 receptor-induced α-secretase activation. 相似文献
17.
18.
与CD95相关的细胞凋亡和免疫调节 总被引:1,自引:0,他引:1
细胞凋亡是一个十分复杂的过程,就目前研究结果来看,CD95系统的调控起到了很重要的作用。它与免疫杀伤、肿瘤免疫和自身免疫疾病密切相关。CD95系统不仅能够维持免疫系统的自身稳定,同时也能发挥免疫反应的作用。在特异性的细胞毒效应作用中,CD95通路是细胞毒性T淋巴细胞(CTL)杀伤靶细胞的一种方式;CD95通路在肿瘤中的失效使之逃避免疫监视和削弱免疫反应;活化的T细胞和B细胞增殖后所出现的细胞凋亡,主要是通过CD95/CD95L诱导的凋亡途径产生。一旦CD95-CD95L体系功能紊乱,就会造成严重的自身免疫疾病。 相似文献
19.