首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了进一步确定PrP蛋白与微管蛋白是否发生分子间相互作用以及PrP蛋白多肽链中与微管蛋白相互作用的区域,我们表达纯化了全长的PrP以及PrP蛋白缺失突变体,提取了兔脑组织中天然微管蛋白。利用pull-down及免疫共沉淀方法检测全长PrP及PrP蛋白缺失突变体与微管蛋白是否发生分子间相互作用。结果显示,全长His-PrP23-231能与微管蛋白发生体外相互作用,并首次证实了PrP与微管蛋白相互作用的区域位于PrP N端第23位至91位氨基酸。此研究为进一步研究PrP在神经细胞的主动转运机制以及Prion疾病的发病机制提供了一定的理论基础。  相似文献   

2.
Zhou RM  Jing YY  Guo Y  Gao C  Zhang BY  Chen C  Shi Q  Tian C  Wang ZY  Gong HS  Han J  Xu BL  Dong XP 《PloS one》2011,6(8):e23079

Background

Tubulin polymerization promoting protein/p25 (TPPP/p25), known as a microtubule-associated protein (MAP), is a brain-specific unstructured protein with a physiological function of stabilizing cellular microtubular ultrastructures. Whether TPPP involves in the normal functions of PrP or the pathogenesis of prion disease remains unknown. Here, we proposed the data that TPPP formed molecular complex with PrP. We also investigated its influence on the aggregation of PrP and fibrillization of PrP106–126 in vitro, its antagonization against the disruption of microtubule structures and cytotoxicity of cytosolic PrP in cells, and its alternation in the brains of scrapie-infected experimental hamsters.

Methodology/Principal Findings

Using pull-down and immunoprecipitation assays, distinct molecular interaction between TPPP and PrP were identified and the segment of TPPP spanning residues 100–219 and the segment of PrP spanning residues 106–126 were mapped as the regions responsible for protein interaction. Sedimentation experiments found that TPPP increased the aggregation of full-length recombinant PrP (PrP23–231) in vitro. Transmission electron microscopy and Thioflavin T (ThT) assays showed that TPPP enhanced fibril formation of synthetic peptide PrP106–126 in vitro. Expression of TPPP in the cultured cells did not obviously change the microtubule networks observed by a tubulin-specific immunofluorescent assay and cell growth features measured by CCK8 tests, but significantly antagonized the disruption of microtubule structures and rescued the cytotoxicity caused by the accumulation of cytosolic PrP (CytoPrP). Furthermore, Western blots identified that the levels of the endogenous TPPP in the brains of scrapie-infected experimental hamsters were significantly reduced.

Conclusion/Significance

Those data highlight TPPP may work as a protective factor for cells against the damage effects of the accumulation of abnormal forms of PrPs, besides its function as an agent for dynamic stabilization of microtubular ultrastructures.  相似文献   

3.
Here, we describe the structure of a C-terminal high-affinity copper-binding site within a truncated recombinant human PrP containing residues 91-231, which lacks the octapeptide repeat region. We show that at least two extra co-ordinating groups are involved in binding this copper(II) ion in conjunction with histidine residues 96 and 111 in a region of the molecule known to be critical in conferring strain type. In addition, using X-ray solution scattering, a low-resolution shape of PrP(91-231) is provided. The restored molecular envelope is consistent with the picture where the N-terminal segment, residues 91-120, extends out from the previously known globular domain containing residues 121-231.  相似文献   

4.
Microtubule dynamics is essential for many vital cellular processes such as in intracellular transport, metabolism, and cell division. Evidences demonstrate that α-synuclein may associate with microtubular cytoskeleton and its major component, tubulin. In the present study, the molecular interaction between α-synuclein and tubulin was confirmed by GST pull-down assay and co-immunoprecipitation. The interacting regions within α-synuclein with tubulin were mapped at the residues 60–100 of α-synuclein that is critical for the binding activity with tubulin. Microtubule assembly assays and sedimentation tests demonstrated that α-synuclein influenced the polymerization of tubulin in vitro, revealing an interacting region-dependent feature. Confocal microscopy detected that exposures of α-synuclein proteins inhibited microtubule formation in the cultured cells, with a length-dependent phenomenon. Our data highlight a potential role of α-synuclein in regulating the microtubule dynamics in neurons. The association of α-synuclein with tubulin may further provide insight into the biological and pathophysiological function of synuclein.  相似文献   

5.
人类朊病毒病中约10%~15%具有家族遗传特性,其中插入或缺失突变多发生于PrP蛋白N末端的八肽重复区域。运用PCR成功地构建并表达了含不同八肽重复数目的PrP蛋白,并观察八肽重复数目的增加对PrP与Cu^2+等二价离子以及tau蛋白的相互作用的影响。实验结果显示:各种纯化后的PrP蛋白对常规浓度PK消化是敏感的,而与Cu^2+共同孵育可使PrP蛋白的PK抗性增强;八肽重复序列的数目及Cu^2+的浓度决定了PK抗性的出现和强弱。另外,MnH可诱导产生与CuH相似的结果,但其诱导效应似乎低于CuH,而Zn^2+对PrP蛋白的PK抗性无影响。GST—tau包被的ELISA检测证实,重组的PrP呈现出明显的tau蛋白结合能力,并且与八肽重复序列的数量相关,重复序列数量越多,结合能力越强。这些结果提示,CuH诱导产生的PrP蛋白PK抗性是通过八肽重复序列区域产生的,并且直接与重复序列的数量相关。另外,PrP蛋白八肽重复序列的存在和数量直接影响PrP与tau蛋白的结合效应。除了八肽区域外,PrP蛋白其它区域似乎也具有一定的tau蛋白结合能力。  相似文献   

6.
Microtubule associated protein tau is considered to play roles in some types of human transmissible spongiform encephalopathies (TSE). In this study, the full-length and several truncated human tau proteins were expressed from E. coli and purified. Using GST pull down, co-immunoprecipitation assay and tau-coated ELISA, the molecular interaction between tau protein and PrP was confirmed in the context of the full-length human tau. The N terminus (amino acids 1–91) and tandem repeats region (amino acids 186–283) of tau protein were responsible for the interaction with PrP. The octapeptide repeats within PrP directly affected the binding activity of PrP with tau. GSS-related mutant PrP102L and fCJD- related mutants with two and seven extra octarepeats showed more active binding capacity with tau than wild-type PrP. The molecular interactions between PrP and tau protein highlight a potential role of tau in the biological function of PrP and the pathogenesis of TSE.  相似文献   

7.
Shiraishi N  Nishikimi M 《FEBS letters》2002,511(1-3):118-122
The amino-terminal part of prion protein (PrP), containing a series of octapeptide repeats with the consensus sequence PHGGGWGQ, has been implicated in the binding of copper ion. This region possesses amino acid residues susceptible to oxidation, such as histidine, lysine, arginine and proline. In this study, we have investigated copper-catalyzed oxidation of an N-terminal part of human PrP, PrP23-98, that was prepared by the recombinant DNA technique. Carbonyl formations on copper-bound PrP23-98 induced by dopamine and L-ascorbate were analyzed kinetically, and it was found that the redox cycling of PrP23-98-bound copper, especially induced by dopamine, was coupled to the formation of carbonyls on the protein.  相似文献   

8.
Our previous studies have demonstrated that prion protein (PrP) leads to disassembly of microtubular cytoskeleton through binding to tubulin and its oligomerization. Here we found that PrP-treated cells exhibited improper morphology of mitotic spindles. Formation of aberrant spindles may result not only from altered microtubule dynamics - as expected from PrP-induced tubulin oligomerization - but also from impairing the function of molecular motors. Therefore we checked whether binding of PrP to microtubules affected movement generated by Ncd - a kinesin responsible for the proper organization of division spindles. We found that PrP inhibited Ncd-driven transport of microtubules. Most probably, the inhibition of the microtubule movement resulted from PrP-induced changes in the microtubule structure since Ncd-microtubule binding was reduced already at low PrP to tubulin molar ratios. This study suggests another plausible mechanism of PrP cytotoxicity related to the interaction with tubulin, namely impeding microtubule-dependent transport.  相似文献   

9.
Nucleotide binding and phosphorylation in microtubule assembly in vitro.   总被引:4,自引:0,他引:4  
Two non-hydrolyzable analogs of GTP, guanylyl-β,γ-methylene diphosphonate and guanylyl imidodiphosphate, have been found to induce rapid and efficient microtubule assembly in vitro by binding at the exchangeable site (E-site) on tubulin. Characterization of microtubule polymerization by several criteria, including polymerization kinetics, nucleotide binding to depolymerized and polymerized microtubules, and microtubule stability, reveals strong similarities between microtubule assembly induced by GTP and non-hydrolyzable GTP analogs. Nucleoside triphosphates which bind weakly or not at all to tubulin, such as ATP, UTP and CTP, are shown to induce microtubule assembly by means of a nucleoside diphosphate kinase (NDP-kinase, EC 2.7.4.6.) activity which is not intrinsic to tubulin. The NDP-kinase mediates microtubule polymerization by phosphorylating tubulin-bound GDP in situ at the E-site. Although hydrolysis of exchangeably bound GTP occurs, it is found to be uncoupled from the polymerization reaction. The non-exchangeable nucleotide binding site on tubulin (N-site) is not directly involved in microtubule assembly in vitro. The N-site is shown to contain almost exclusively GTP which is not hydrolyzed during microtubule assembly. A scheme is presented in which GTP acts as an allosteric effector at the E-site during microtubule assembly in vitro.  相似文献   

10.
In previous studies we have demonstrated that prion protein (PrP) binds directly to tubulin and this interaction leads to the inhibition of microtubule formation by inducement of tubulin oligomerization. This report is aimed at mapping the regions of PrP and tubulin involved in the interaction and identification of PrP domains responsible for tubulin oligomerization. Preliminary studies focused our attention to the N‐terminal flexible part of PrP encompassing residues 23–110. Using a panel of deletion mutants of PrP, we identified two microtubule‐binding motifs at both ends of this part of the molecule. We found that residues 23–32 constitute a major site of interaction, whereas residues 101–110 represent a weak binding site. The crucial role of the 23–32 sequence in the interaction with tubulin was confirmed employing chymotryptic fragments of PrP. Surprisingly, the octarepeat region linking the above motifs plays only a supporting role in the interaction. The binding of Cu2+ to PrP did not affect the interaction. We also demonstrate that PrP deletion mutants lacking residues 23–32 exhibit very low efficiency in the inducement of tubulin oligomerization. Moreover, a synthetic peptide corresponding to this sequence, but not that identical with fragment 101–110, mimics the effects of the full‐length protein on tubulin oligomerization and microtubule assembly. At the cellular level, peptide composed of the PrP motive 23–30 and signal sequence (1–22) disrupted the microtubular cytoskeleton. Using tryptic and chymotryptic fragments of α‐ and β‐tubulin, we mapped the docking sites for PrP within the C‐terminal domains constituting the outer surface of microtubule. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
MGRN1‐mediated ubiquitination of α‐tubulin regulates microtubule stability and mitotic spindle positioning in mitotic cells. This study elucidates the effect of MGRN1‐mediated ubiquitination of α‐tubulin in interphase cells. Here, we show that MGRN1‐mediated ubiquitination regulates dynamics of EB1‐labeled plus ends of microtubules. Intracellular transport of mitochondria and endosomes are affected in cultured cells where functional MGRN1 is depleted. Defects in microtubule‐dependent organellar transport are evident in cells where noncanonical K6‐mediated ubiquitination of α‐tubulin by MGRN1 is compromised. Loss of MGRN1 has been previously correlated with late‐onset spongiform neurodegeneration. Mislocalised cytosolically exposed PrP (CtmPrP) interacts with MGRN1 leading to its loss of function. Expression of CtmPrP generating mutants of PrP[PrP(A117V) and PrP(KHII)] lead to decrease in MGRN1‐mediated ubiquitination of α‐tubulin and intracellular transport defects. Brain lysates from PrP(A117V) transgenic mice also indicate loss of tubulin polymerization as compared to non‐transgenic controls. Depletion of MGRN1 activity may hamper physiologically important processes like mitochondrial movement in neuronal processes and intracellular transport of ligands through the endosomal pathway thereby contributing to the pathogenesis of neurodegeneration in certain types of prion diseases.   相似文献   

12.
Proteins of the 14-3-3 family are universal participate in multiple cellular processes. However, their exact role in the pathogenesis of prion diseases remains unclear. In this study, we proposed that human PrP was able to form molecular complex with 14-3-3β. The domains responsible for the interactions between PrP and 14-3-3β were mapped at the segments of amino acid (aa) residues 106–126 within PrP and aa 1–38 within 14-3-3β. Homology modeling revealed that the key aa residues for molecular interaction were D22 and D23 in 14-3-3β as well as K110 in PrP. Mutations in these aa residues inhibited the interaction between the two proteins in vitro. Our results also showed that recombinant PrP encouraged 14-3-3β dimer formation, whereas PrP106–126 peptide inhibited it. Recombinant 14-3-3β disaggregated the mature PrP106–126 fibrils in vitro. Moreover, the PrP–14-3-3 protein complexes were observed in the brain tissues of normal and scrapie agent 263 K infected hamsters. Colocalization of PrP and 14-3-3 was seen in the cytoplasm of human neuroblastoma cell line SH-SY5Y, as well as human cervical cancer cell line HeLa transiently expressing full-length human PrP. Our current data suggest the neuroprotection of PrPC and neuron damage caused by PrPSc may be associated with their functions of 14-3-3 dimerization regulation.  相似文献   

13.
RNA aptamers specifically interact with the prion protein PrP.   总被引:9,自引:0,他引:9       下载免费PDF全文
We have isolated RNA aptamers which are directed against the recombinant Syrian golden hamster prion protein rPrP23-231 (rPrPc) fused to glutathione S-transferase (GST). The aptamers did not recognize the fusion partner GST or the fusion protein GST::rPrP90-231 (rPrP27-30), which lacks 67 amino acids from the PrP N terminus. The aptamer-interacting region of PrPc was mapped to the N-terminal amino acids 23 to 52. Sequence analyses suggest that the RNA aptamers may fold into G-quartet-containing structural elements. Replacement of the G residues in the G quartet scaffold with uridine residues destroyed binding to PrP completely, strongly suggesting that the G quartet motif is essential for PrP recognition. Individual RNA aptamers interact specifically with prion protein in brain homogenates from wild-type mice (C57BL/6), hamsters (Syrian golden), and cattle as shown by supershifts obtained in the presence of anti-PrP antibodies. No interaction was observed with brain homogenates from PrP knockout mice (prn-p(0/0)). Specificity of the aptamer-PrP interaction was further confirmed by binding assays with antisense aptamer RNA or a mutant aptamer in which the guanosine residues in the G tetrad scaffold were replaced by uridine residues. The aptamers did not recognize PrP27-30 in brain homogenates from scrapie-infected mice. RNA aptamers may provide a first milestone in the development of a diagnostic assay for the detection of transmissible spongiform encephalopathies.  相似文献   

14.
A series of novel quinazolines as tubulin inhibitors occupying three zones of colchicine domain have been designed and synthesized inspired by the recently disclosed crystal structure of verubulin analogue 6 with tubulin. Among the newly synthesized compounds, 19c showed noteworthy potency against K562, HepG2, KB, HCT-8 and MDB-MB-231 cancer cells. In vitro microtubule polymerization assays identified 19c as a potent tubulin assembly inhibitor, the binding mode of which with tubulin was confirmed by molecular modeling studies to occupy three zones of tubulin domain. Furthermore, 19c disrupted the intracellular microtubule network, caused G2/M phase arrest, induced cell apoptosis and depolarized mitochondria of K562 cells. 19c also reduced the cell migration and disrupted the capillary-like tube formation of human umbilical vein endothelial cells (HUVECs). Importantly, 19c significantly and dose dependently inhibited tumor growth in H22 liver cancer xenograft mouse model. All these results suggested that 19c deserves further research as a novel and potential anti-tubulin agent for the treatment of cancers.  相似文献   

15.
Microtubule cytoskeletons are involved in many essential functions throughout the life cycle of cells, including transport of materials into cells, cell movement, and proper progression of cell division. Small compounds that can bind at the colchicine site of tubulin have drawn great attention because these agents can suppress or inhibit microtubule dynamics and tubulin polymerization. To find novel tubulin polymerization inhibitors as anti-mitotic agents, we performed a virtual screening study of the colchicine binding site on tubulin. Novel tubulin inhibitors were identified and characterized by their inhibitory activities on tubulin polymerization in vitro. The structural basis for the interaction of novel inhibitors with tubulin was investigated by molecular modeling, and we have proposed binding models for these hit compounds with tubulin. The proposed docking models were very similar to the binding pattern of colchicine or podophyllotoxin with tubulin. These new hit compound derivatives exerted growth inhibitory effects on the HL60 cell lines tested and exhibited strong cell cycle arrest at G2/M phase. Furthermore, these compounds induced apoptosis after cell cycle arrest. In this study, we show that the validated derivatives of compound 11 could serve as potent lead compounds for designing novel anti-cancer agents that target microtubules.  相似文献   

16.
Vinblastine, at concentrations above approximately 1 to 2 microM, causes depolymerization of steady-state bovine brain microtubules in vitro by a fraying of microtubule ends into protofilament-like spirals. Microtubule depolymerization is associated with the binding of vinblastine in approximately molar stoichiometry to tubulin in microtubules with apparent low affinity, as determined by binding experiments with radiolabeled vinblastine and by the ability of vinblastine to inhibit DEAE-dextran decoration of microtubule surfaces. Our data suggest that depolymerization occurs by a propagated mechanism, initially involving binding of vinblastine to a limited number of available sites on microtubule surfaces. This appears to cause loosening of protofilament associations which results in the exposure of new vinblastine-binding sites. Additional vinblastine binding in turn results in further loosening of protofilament associations. Such loosening, when it occurs at microtubule ends, results in protofilament-like splaying and end-wise depolymerization. Microtubule depolymerization appears mechanistically distinct from inhibition of microtubule polymerization by the drug, which is associated with the binding of vinblastine to small numbers of high-affinity binding sites on tubulin at one or both microtubule ends.  相似文献   

17.
Cellular PrP is actively cycled between the cell surface and the endosomal pathway. The exact site and mechanism of conversion from PrP(C) to PrP(Sc) remain unknown. We have previously used recombinant antibodies containing grafts of PrP sequence to identify three regions of PrP(C) (aa23-27, 98-110, and 136-158) that react with PrP(Sc) at neutral pH. To determine if any regions of PrP(C) react with PrP(Sc) at an acidic pH similar to that of an endosomal compartment, we tested our panel of grafted antibodies for the ability to precipitate PrP(Sc) in a range of pH conditions. At pH near or lower than 6, PrP-grafted antibodies representing the octapeptide repeat react strongly with PrP(Sc) but not PrP(C). Modified grafts in which the histidines of the octarepeat were replaced with alanines did not react with PrP(Sc). PrP(Sc) precipitated by the octapeptide at pH 5.7 was able to seed conversion of normal PrP to PrP(Sc) in vitro. However, modified PrP containing histidine to alanine substitutions within the octapeptide repeats was still converted to PrP(Sc) in N2a cells. These results suggest that once PrP has entered the endosomal pathway, the acidic environment facilitates the binding of PrP(Sc) to the octarepeat of PrP(C) by the change in charge of the histidines within the octarepeat.  相似文献   

18.
A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for the first time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of approximately 50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers.  相似文献   

19.
A central feature of transmissible spongiform encephalopathies (TSE or prion diseases) involves the conversion of a normal, protease-sensitive glycoprotein termed prion protein (PrP-sen) into a pro-tease-resistant form, termed PrP-res. The N terminus of PrP-sen has five copies of a repeating eight amino acid sequence (octapeptide repeat). The presence of one to nine extra copies of this motif is associated with a heritable form of Creutzfeld-Jakob disease (CJD) in humans. An increasing number of octapeptide repeats correlates with earlier CJD onset, suggesting that the rate at which PrP-sen misfolds into PrP-res may be influenced by these mutations. In order to determine if octapeptide repeat insertions influence the rate at which PrP-res is formed, we used a hamster PrP amyloid-forming peptide (residues 23-144) into which two to 10 extra octapeptide repeats were inserted. The spontaneous formation of protease-resistant PrP amyloid from these peptides was more rapid in response to an increased number of octapeptide repeats. Furthermore, experiments using full-length glycosylated hamster PrP-sen demonstrated that PrP-res formation also occurred more rapidly from PrP-sen molecules expressing 10 extra copies of the octapeptide repeat. The rate increase for PrP-res formation did not appear to be due to any influence of the octapeptide repeat region on PrP structure, but rather to more rapid binding between PrP molecules. Our data from both models support the hypothesis that extra octapeptide repeats in PrP increase the rate at which protease resistant PrP is formed which in turn may affect the rate of disease onset in familial forms of CJD.  相似文献   

20.
DNA aptamers were selected against recombinant human (rhu) cellular prion protein (PrP(C)) 23-231 by systematic evolution of ligands via a systematic evolution of ligands by exponential (SELEX) enrichment procedure using lateral flow chromatography. The SELEX procedure was performed with an aptamer library consisting of a randomized 40-nucleotide core flanked by 28-mer primer-binding sites that, theoretically, represented approximately 10(24) distinct nucleic acid species. Sixty nanograms of rhuPrP(C)23-231 immobilized in the center of a lateral flow device was used as the target molecule for SELEX. At the end of 6 iterations of SELEX, 13 distinct candidate aptamers were identified, of which, 3 aptamers represented 32%, 8%, and 5% of the sequences respectively. Eight aptamers, including the three most frequently occurring candidates, were selected for further evaluation. Selected aptamers bound to rhuPrP(C)23-231 at 10(-6) M to 10(-8) M concentrations. Two of the eight aptamers bound at higher concentrations to rhuPrP(C)90-231. Theoretical thermodynamic modeling of selected aptamer sequences identified several common motifs among the selected aptamers that could play a role in PrP binding. Binding affinity to rhuPrP(C)23-231 was both aptamer sequence and structure dependent. Further, selected aptamers bound to mammalian PrPs derived from brain of healthy sheep, calf, piglet, and deer, and to PrP(C) expressed in mouse neuroblastoma cells. None of the aptamers bound to proteinase K-digested scrapie-infected mouse neuroblastoma cells or untreated PrP-null cells, which further confirmed the PrP(C) specificity of the aptamers. In summary, we enriched and selected DNA aptamers that bind specifically to rhuPrP(C) and mammalian PrP(C) with varying affinities and can be applied to biological samples for PrP(C) enrichment and as diagnostic tools in double ligand assay systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号