首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The involvement of kinesin motor proteins in both cell-tip growth and cell-shape determination has been well characterized in various organisms. However, the functions of kinesins during cell morphogenesis in higher plants remain largely unknown. In the current study, we demonstrate that an armadillo repeat-containing kinesin-related protein, ARMADILLO REPEAT KINESIN1 (ARK1), is involved in root-hair morphogenesis. Microtubule polymers are more abundant in ark1 null allele root hairs, but analysis shows that these extra microtubules are concentrated in the endoplasm, and not in the cortical array, suggesting that ARK1 regulates tip growth by limiting the assembly and distribution of endoplasmic microtubules. The ARK1 gene has two homologues in the Arabidopsis genome, ARK2 and ARK3, and our results show that ARK2 is involved in root-cell morphogenesis. We further reveal that a NIMA-related protein kinase, NEK6, binds to the ARK family proteins and has pleiotropic effects on epidermal-cell morphogenesis, suggesting that NEK6 is involved in cell morphogenesis in Arabidopsis via microtubule functions associated with these armadillo repeat-containing kinesins. We discuss the function of NIMA-related protein kinases and armadillo repeat-containing kinesins in the cell morphogenesis of eukaryotes.  相似文献   

2.
The NIMA kinases are an evolutionarily conserved protein family with enigmatic roles in the regulation of mitosis. We report six new members of this family in Chlamydomonas, in addition to the previously identified NIMA-related kinase, Fa2p. Chlamydomonas NIMA-related kinases (CNKs) 1-6 were sequenced from subclones generated by RT-PCR using information from EST libraries and the recently sequenced Chlamydomonas genome. Phylogenetic and bioinformatic approaches were used to determine the relationships of the six new members with known members of the NIMA-related kinase family. Although humans express at least eleven NIMA-related kinases, the eukaryotic microbes that have been studied to date express only one or two members of the family. Thus, the discovery that Chlamydomonas expresses a total of at least seven NIMA-related kinases is intriguing. Our analyses suggest that members of this family may play roles in the assembly and function of cilia.  相似文献   

3.
4.

Background  

The NIMA-related kinases (Neks) are widespread among eukaryotes. In mammalians they represent an evolutionarily conserved family of 11 serine/threonine kinases, with 40-45% amino acid sequence identity to the Aspergillus nidulans mitotic regulator NIMA within their catalytic domains. Neks have cell cycle-related functions and were recently described as related to pathologies, particularly cancer, consisting in potential chemotherapeutic targets. Human Nek6, -7 and -9 are involved in the control of mitotic spindle formation, acting together in a mitotic kinase cascade, but their mechanism of regulation remain elusive.  相似文献   

5.
The cdc2 kinases are important cell cycle regulators in all eukaryotes. MAP kinases, a closely related family of protein kinases, are involved in cell cycle regulation in yeasts and vertebrates, but previously have not been documented in plants. We used PCR to amplify Brassica napus DNA sequences using primers corresponding to amino sequences that are common to all known protein kinases. One sequence was highly similar to KSS1, a MAP kinase from Saccharomyces cerevisiae. This sequence was used to isolate a full-length MAP kinase-like clone from a pea cDNA library. The pea clone, called D5, shared approximately 50% amino acid identity with MAP kinases from yeasts and vertebrates and about 41% identity with plant cdc2 kinases. An expression protein encoded by D5 was recognized by an antiserum specific to human MAP kinases (ERKs). Messenger RNA corresponding to D5 was present at similar levels in all tissues examined, without regard to whether cell division or elongation were occurring in those tissues.  相似文献   

6.
The plant cell cycle   总被引:1,自引:0,他引:1  
The first aim of this paper is to review recent progress in identifying genes in plants homologous to cell division cycle (cdc) genes of fission yeast. In the latter, cdc genes are well-characterised. Arguably, most is known about cdc2 which encodes a 34 kDa protein kinase (p34cdc2) that functions at the G2-M and G1-S transition points of the cell cycle. At G2-M, the p34cdc2 protein kinase is regulated by a number of gene products that function in independent regulatory pathways. The cdc2 kinase is switched on by a phosphatase encoded by cdc25, and switched off by a protein kinase encoded by weel. p34 Must also bind with a cyclin protein to form maturation promoting factor before exhibiting protein kinase activity. In plants, homologues to p34cdc2 have been identified in pea, wheat, Arabidopsis, alfalfa, maize and Chlamydomonas. They all exhibit the PSTAIRE motif, an absolutely conserved amino acid sequence in all functional homologues sequenced so far. As in animals, some plant species contain more than one cdc2 protein kinase gene. but in contrast to animals where one functions at G2-M and the other (CDK2 in humans and Egl in Xenopus) at G1-S, it is still unclear whether there are functional differences between the plant p34cdc2 protein kinases. Again, whereas in animals cyclins are well characterised on the basis of sequence analysis, into class A, class B (G2-M) and CLN (G1 cyclins), cyclins isolated from several plant species cannot be so clearly characterised. The differences between plant and animal homologues to p34cdc2 and cyclins raises the possibility that some of the regulatory controls of the plant genes may be different from those of their animal counterparts. The second aim of the paper is to review how planes of cell division and cell size are regulated at the molecular level. We focus on reports showing that p34cdc2 binds to the preprophase band (ppb) in late G2 of the cell cycle. The binding of p34cdc2 to ppbs may be important in regulating changes in directional growth but, more importantly, there is a requirement to understand what controls the positioning of ppbs. Thus, we highlight work resolving proteins such as the microtubule associated proteins (MAPs) and those mitogen activated protein kinases (MAP kinases), which act on, or bind to, mitotic microtubules. Plant homologues to MAP kinases have been identified in alfalfa. Finally, some consideration is given to cell size at division and how alterations in cell size can alter plant development. Transgenic tobacco plants expressing the fission yeast gene, cdc25, exhibited various perturbations of development and a reduced cell size at division. Hence, cdc25 affected the cell cycle (and as a consequence, cell size at division) and cdc25 expression was correlated with various alterations to development including precocious flowering and altered floral morphogenesis. Our view is that the cell cycle is a growth cycle in which a cell achieves an optimal size for division and that this size control has an important bearing on differentiation and development. Understanding how cell size is controlled, and how plant cdc genes are regulated, will be essential keys to ‘the cell cycle locks’, which when ‘opened’, will provide further clues about how the cell cycle is linked to plant development.  相似文献   

7.
Myxococcus xanthus, a gram-negative bacterium exhibits a spectacular life cycle and social behavior. Its developmental cycle and multicellular morphogenesis resemble those of eukaryotic slime molds such as Dictyostelium discoideum. On the basis of this resemblance, we explored the existence of eukaryotic-like protein serine/threonine kinases which are known to play important roles in signal transduction during development of D. discoideum. It was indeed found that M. xanthus contains a large family of protein serine/threonine kinases related to the eukaryotic enzymes. This is the first unambiguous demonstration of eukaryotic-like protein serine/threonine kinases in the prokaryotes. © 1993 Wiley-Liss, Inc.  相似文献   

8.
9.
Enzymes that modify cell wall components most likely play critical roles in altering size, shape, and physical properties of plant cells. Regulation of such modifying activity is expected to be important during morphogenesis and in eliciting developmental and physiological alterations that arise in response to environmental conditions. Previous work has shown that the Arabidopsis TCH4 gene encodes a xyloglucan endotransglycosylase (XET) which acts on the major hemicellulose of the plant cell wall. The expression of TCH4 is dramatically upregulated in response to several environmental stimuli (including touch, wind, darkness, heat shock, and cold shock) as well as the growth-enhancing hormones, auxin and brassinosteroids. This paper reports the presence of an extensive X ET ,related (XTR) gene family in Arabidopsis. In addition to TCH4, this family includes two previously identified genes, EXT and Meri-5, and at least five additional genes. The cDNAs of the XTR family share between 46 and 79% sequence identity and the predicted XTR proteins share from 37 to 84% identity. All eight proteins include potential N-terminal signal sequences and most have a conserved motif (DEIDFEFLG) that is also found in Bacillusβ-glucanase and may be important for enzyme activity. The members of the XTR gene family are differentially sensitive to environmental and hormonal stimuli. Magnitude and kinetics of regulation are distinct for the different genes. Differential regulation of expression of this complex gene family suggests a recruitment of related, yet distinct, cell wall-modifying enzymes that may control the properties of cell walls and tissues during development and in response to environmental cues.  相似文献   

10.
CDK-related protein kinases in plants   总被引:4,自引:4,他引:0  
Cyclin-dependent kinases (CDK) form a conserved superfamily of eukaryotic serine-threonine protein kinases, which require binding to a cyclin protein for activity. CDK are involved in different aspects of cell biology and notably in cell cycle regulation. The comparison of nearly 50 plant CDK-related cDNAs with a selected set of their animal and yeast counterparts reveals five classes of these genes in plants. These are described here with respect to their phylogenetic, structural and functional properties. A plant-wide nomenclature of CDK-related genes is proposed, using a system similar to that of the plant cyclin genes. The most numerous class, CDKA, includes genes coding for CDK with the PSTAIRE canonical motif. CDKB makes up a class of plant-specific CDK divided into two groups: CDKB1 and CDKB2. CDKC, CDKD and CDKE form less numerous classes. The CDKD class includes the plant orthologues of metazoan CDK7, which correspond to the CDK-activating kinase (CAK). At present, no functional information is available in plants for CDKC and CDKE.  相似文献   

11.
NIMA-related kinase 6 (NEK6) regulates cellular expansion and morphogenesis through microtubule organizaiton in Arabidopsis thaliana. Loss-of-function mutations in NEK6 (nek6/ibo1) cause ectopic outgrowth and microtubule disorganization in epidermal cells. We recently found that NEK6 forms homodimers and heterodimers with NEK4 and NEK5 to destabilize cortical microtubules possibly by direct binding to microtubules and the β-tubulin phosphorylation. Here, we identified a new allele of NEK6 and further analyzed the morphological phenotypes of nek6/ibo1 mutants, along with alleles of nek4 and nek5 mutants. Phenotypic analysis demonstrated that NEK6 is required for the directional growth of roots and hypocotyls, petiole elongation, cell file formation, and trichome morphogenesis. In addition, nek4, nek5, and nek6/ibo1 mutants were hypersensitive to microtubule inhibitors such as propyzamide and taxol. These results suggest that plant NEKs function in directional cell growth and organ development through the regulation of microtubule organization.  相似文献   

12.
Multiple receptor-like kinases (RLKs) enable intercellular communication that coordinates growth and development of plant tissues. ERECTA family receptors (ERfs) are an ancient family of leucine-rich repeat RLKs that in Arabidopsis consists of three genes: ERECTA, ERL1, and ERL2. ERfs sense secreted cysteine-rich peptides from the EPF/EPFL family and transmit the signal through a MAP kinase cascade. This review discusses the functions of ERfs in stomata development, in regulation of longitudinal growth of aboveground organs, during reproductive development, and in the shoot apical meristem. In addition the role of ERECTA in plant responses to biotic and abiotic factors is examined.  相似文献   

13.
Developing vertebrate limbs are often utilized as a model for studying pattern formation and morphogenetic cell death. Herein, we report that conditional deletion of Rac1, a member of the Rho family of proteins, in mouse limb bud mesenchyme led to skeletal deformities in the autopod and soft tissue syndactyly, with the latter caused by a complete absence of interdigital programmed cell death. Furthermore, the lack of interdigital programmed cell death and associated syndactyly was related to down-regulated gene expression of Bmp2, Bmp7, Msx1, and Msx2, which are known to promote apoptosis in the interdigital mesenchyme. Our findings from Rac1 conditional mutants indicate crucial roles for Rac1 in limb bud morphogenesis, especially interdigital programmed cell death.  相似文献   

14.
Cellulose is an abundant biopolymer and a prominent constituent of plant cell walls. Cellulose is also a central component to plant morphogenesis and contributes the bulk of a plant's biomass. While cellulose synthase (CesA) genes were identified over two decades ago, genetic manipulation of this family to enhance cellulose production has remained difficult. In this study, we show that increasing the expression levels of the three primary cell wall AtCesA6‐like genes (AtCesA2, AtCesA5, AtCesA6), but not AtCesA3, AtCesA9 or secondary cell wall AtCesA7, can promote the expression of major primary wall CesA genes to accelerate primary wall CesA complex (cellulose synthase complexes, CSCs) particle movement for acquiring long microfibrils and consequently increasing cellulose production in Arabidopsis transgenic lines, as compared with wild‐type. The overexpression transgenic lines displayed changes in expression of genes related to cell growth and proliferation, perhaps explaining the enhanced growth of the transgenic seedlings. Notably, overexpression of the three AtCesA6‐like genes also enhanced secondary cell wall deposition that led to improved mechanical strength and higher biomass production in transgenic mature plants. Hence, we propose that overexpression of certain AtCesA genes can provide a biotechnological approach to increase cellulose synthesis and biomass accumulation in transgenic plants.  相似文献   

15.
ZmMPK6, a Novel Maize MAP Kinase that Interacts with 14-3-3 Proteins   总被引:2,自引:0,他引:2  
Although an increasing body of evidence indicates that plant MAP kinases are involved in a number of cellular processes, such as cell cycle regulation and cellular response to abiotic stresses, hormones and pathogen attack, very little is known about their biochemical properties and regulation mechanism. In this paper we report on the identification and characterization of a novel member of the MAP kinase family from maize, ZmMPK6. The amino acid sequence reveals a high degree of identity with group D plant MAP kinases. Recombinant ZmMPK6, expressed in Escherichia coli, is an active enzyme able to autophosphorylate. Remarkably, ZmMPK6 interacts in vitro with GF14-6, a maize 14-3-3 protein and the interaction is dependent on autophosphorylation. The interacting domain of ZmMPK6 is on the C-terminus and is comprised between amino acid 337 and amino acid 467. Our results represent the first evidence of an interaction between a plant MAP kinase and a 14-3-3 protein. Possible functional roles of this association in vivo are discussed.  相似文献   

16.
The Aurora kinase family is a well-characterized serine/threonine protein kinase family that regulates different processes of mitotic events. Although functions of animal and yeast Aurora kinases have been analyzed, plant aurora kinases were not identified and characterized. We identified three Aurora kinase orthologs in Arabidopsis thaliana and designated these as AtAUR1, AtAUR2, and AtAUR3. These AtAURs could phosphorylate serine 10 in histone H3, in vitro. Dynamic analyses of GFP-fused AtAUR proteins revealed that AtAUR1 and AtAUR2 localized at the nuclear membrane in interphase and located in mitotic spindles during cell division. AtAUR1 also localized in the cell plates. AtAUR3 showed dot-like distribution on condensed chromosomes at prophase and then localized at the metaphase plate. At late anaphase, AtAUR3 is evenly localized on chromosomes. The localization of AtAUR3 during mitosis is very similar to that of phosphorylated histone H3. Interestingly, an overexpression of AtAUR3 induces disassembly of spindle microtubules and alteration of orientation of cell division. Our results indicate that plant Aurora kinases have different characters from that of Aurora kinases of other eukaryotes.†These authors equally contributed to this work  相似文献   

17.
Near the end of the cell cycle, ciliates commit irreversibly to cell division. The point of commitment occurs at the time of oral polykinetid assembly and micronuclear anaphase. The commitment is a checkpoint which requisites a threshold cell mass/ DNA ratio and stomatogenesis. It is also a physiological transition point, involving cdk protein kinases similar to those of other eukaryotes. Both P34 kD and P36 kD kinases, similar to the S. pombe cdc2 kinases, have been described to have activity as monomers. Subsequent to commitment to division, dramatic cytoskeletal modifications occur for separation of organelles, cortex morphogenesis and cytokinesis. Numerous mutants affecting cytoskeletal function associated with the division process have been obtained in several species. Of these, only the ccl mutant in Paramecium affects cell cycle progression prior to commitment to division. The material reviewed is used to speculate about the mechanisms of regulation of pre-fission morphogenesis and cell division related processes in ciliates.  相似文献   

18.
Streptomyces coelicolor, the model species for morphologically complex actinomycete bacteria, has unique characteristics such as morphological and physiological differentiation, which are controlled by various factors and several protein kinases. From the whole genomic sequence of S. coelicolor A3(2), 44 putative serine/threonine (Ser/Thr) protein kinases were identified, and the pkaF gene was chosen as the best-conserved protein for typical Ser/Thr protein kinases. pkaF encodes a 667-amino acid protein with a predicted N-terminal Ser/Thr kinase domain and four repeated C-terminal penicillin-binding domains and Ser/Thr kinase-associated (PASTA) domains. Based on PCR, a pkaF gene was cloned and heterologously expressed. PkaF expressed in Escherichia coli had the bigger molecular size than the expected value (75 kDa) and was further purified by Ni2+-NTA agarose affinity column chromatography to homogeneity. The purified PkaF was autophosphorylated through the transfer of the γ-phosphate group of ATP. The extent of phosphorylation was proportional to the amount of PkaF, and the phospho-PkaF was dephosphorylated by the addition of the cell lysate of S. coelicolor A3(2). Although no change was observed in the pkaF disruptant, overexpression of pkaF induced severe repression of morphogenesis and actinorhodin production, but not undecylprodigiosin production, implying that PkaF specifically regulates morphogenesis and actinorhodin production in S. coelicolor.  相似文献   

19.
20.
Meristems are sites of undifferentiated cell division, which carry on developing into functional organs. Using the two-hybrid system with a poplar 14-3-3, we uncovered poplar NIMA-related kinase 1 (PNek1) as an interacting protein. PNek1 shows high homology to the mammalian NIMA-related kinases, which are thought to be involved in cell cycle progression. Using a synchronized poplar cell suspension, we observed an accumulation of PNek1 mRNA at the G1/S transition and throughout the G2-to-M progression. Moreover, PNek1-GFP fusion protein localized in the cytoplasm and in both the nuclear and nucleolar regions. Overexpression of PNek1-GFP in Arabidopsis caused morphological abnormalities in flower and siliques. Overall, these results suggest that PNek1 is involved in plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号