首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional electrophoresis (2-DE) showed the variation expression of Arabidopsis thaliana root proteins between wild type and its salt-tolerant mutant obtained from cobalt-60 γ ray radiation. Forty-six differential root protein spots were reproducibly presented on 2-DE maps, and 29 spots were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MS). Fifteen protein spots corresponding to 10 proteins, and 14 protein spots corresponding to 9 proteins were constitutively up-regulated and down-regulated in the salt-tolerant mutant root. Bioinformatic analysis indicated that those differential proteins might be involved in the regulation of redox homeostasis, nucleotide metabolism, signal transduction, stress response and defense, carbohydrate metabolism, and cell wall metabolism. Peroxidase 22 might be a versatile enzyme and might play dual roles in both cell wall metabolism and regulation of redox homeostasis. Our work provides not only new insights into salt-responsive proteins in root, but also the potential salt-tolerant targets for further dissection of molecular mechanism adapted by plants during salt stress.  相似文献   

2.
3.
Cover Caption     
《Insect Science》2019,26(1):NA-NA
The whitefly, Bemisia tabaci, is an important agricultural pest in tropical and subtropical zones. Whiteflies cause extensive damage to tomato, cotton and cassava particularly through direct feeding and transmission of plant viruses. Heat shock proteins (HSP) are essential molecular chaperones and play important roles in the stress responses of insects. To better understand the function of HSP proteins in whiteflies, a comprehensive genomic approaches and RNAi technology were applied (see pages 44–57). Photo provided by Xiao‐Wei Wang and Li‐Xin Qian.  相似文献   

4.
Boron (B) deficiency is a worldwide problem, and Brassica napus is one of the most sensitive crops to B deficiency. To better understand the B starvation response of Brassica napus, we conducted a comparative proteomic analysis of seedling stage Brassica napus root between B-sufficient and B-limited conditions: 45 differentially expressed proteins were successfully identified by 2-DE coupled with MALDI-TOF/TOF-MS and LTQ-ESI-MS/MS analysis. Among these proteins, 10 were down-regulated and 35 were up-regulated under B-limited condition. Combining GO and KEGG analyses with data from previous reports, proteins were categorized into several functional groups, including antioxidant and detoxification, defense-related proteins, signaling and regulation, carbohydrate and energy metabolism, amino acid and fatty acid metabolism, protein translation and degradation, cell wall structure, and transporter. The genes of selected proteins were analyzed by quantitative RT-PCR. Our results provide novel information for better understanding the physiological and biochemical responses to B deficiency in plants.  相似文献   

5.
6.
Induction and break of bud dormancy are important features for perennial plants surviving extreme seasonal variations in climate. However, the molecular mechanism of the dormancy regulation, still remain poorly understood. To better understand the molecular basis of poplar bud dormancy, we used a label-free quantitative proteomics method based on nanoscale ultra performance liquid chromatography-ESI-MSE for investigation of differential protein expression during dormancy induction, dormancy, and dormancy break in apical buds of poplar (Populus simonii × P. nigra). Among these identified over 300 proteins during poplar bud dormancy, there are 74 significantly altered proteins, most of which involved in carbohydrate metabolism (22 %), redox regulation (19 %), amino acid transport and metabolism (10 %), and stress response (8 %). Thirty-one of these proteins were up-regulated, five were down-regulated during three phase, and thirty-eight were expressed specifically under different conditions. Pathway analysis suggests that there are still the presence of various physiological activities and a particular influence on photosynthesis and energy metabolism during poplar bud dormancy. Differential expression patterns were identified for key enzymes involved in major metabolic pathways such as glycolysis and the pentose phosphate pathway, thus manifesting the interplay of intricate molecular events in energy generation for new protein synthesis in the dormant buds. Furthermore, there are significant changes present in redox regulation and defense response proteins, for instance in peroxidase and ascorbate peroxidase. Overall, this study provides a better understanding of the possible regulation mechanisms during poplar bud dormancy.  相似文献   

7.
8.
Abstract Bemisia tabaci (Gennadius) has been considered as a serious pest in all of tropical, subtropical and temperate regions of the world. B. tabaci first recorded as early as in 1940s in China and has been reported as a pest of various crops in 22 provinces or cities. But only recently it has become a severe problem for vegetable and ornamental crops in Guangdong and Beijing. In China B. tabaci is known to transmit at least 5 plant viruses, including tomato yellow leaf curl virus (TYLCV), tomato leaf curl virus (TomLCV), squash leaf curl virus (SqLCV‐C). So far, approximately 18 parasitoids, 17 predators and 1 pathogenic fungus were recorded in China. This paper presents an overview of B. tabaci as a pest and virus vector in China, with special attention given to non‐chemical control strategies.  相似文献   

9.
The sex-linked balanced lethal (SLBL) strains of silkworm serve as an effective system for sex-control in silkworm. To gain comprehensive insight into the effect of one sex-linked balanced lethal gene l 2, comparative proteomic analysis was carried out between the survival embryos ( W + l1 Zl1 + l2 )\left( {W^{ + l_1 } Z^{l_1 + l_2 } } \right) and lethal embryos ( W + l1 Z + l1 l2 )\left( {W^{ + l_1 } Z^{ + l_1 l_2 } } \right) before the lethal stage. The lethal stage of l 2 was confirmed by observing the typical dead embryo morphology. The two genotype embryos before lethal stage were distinguished using polymorphic simple sequence repeats (SSR) markers closely linked to l 2 on the sex chromosome. Finally, 11 differentially expressed protein spots were successfully identified by MALDI-TOF/TOF mass spectrometry (MS). Among them, only 1 protein identified as heat shock protein 20.4 (HSP20.4) was up-regulated in the lethal embryos, while the other 10 were down-regulated. The up-regulation of HSP20.4 suggests that there may be abnormal polypeptides produced in the lethal embryos. The gene ontology (GO) annotation indicated those down-regulated proteins are involved in important biological processes including embryo development, nucleoside metabolism, tRNA splicing, translation and protein folding. The biological pathway analysis showed that those down-regulated proteins are mainly involved in spindle assemblage and morphogenesis. Based on our results, we suggest that the l 2 may be the mutant expressing abnormal polypeptides. Its expression has a negative effect on mitosis and morphogenesis processes. The death of the embryos may be caused by the accumulation of abnormal polypeptides and the handicap of cell proliferation and morphogenesis.  相似文献   

10.
A proteomic approach including two-dimensional electrophoresis and MALDI-TOF analysis has been developed to identify the soluble proteins of the unicellular photosynthetic algae Chlamydomonas reinhardtii. We first described the partial 2D-picture of soluble proteome obtained from whole cells grown on acetate. Then we studied the effects of the exposure of these cells to 150 μM cadmium (Cd). The most drastic effect was the decrease in abundance of both large and small subunits of the ribulose-1,5-bisphosphate carboxylase/oxygenase, in correlation with several other enzymes involved in photosynthesis, Calvin cycle and chlorophyll biosynthesis. Other down-regulated processes were fatty acid biosynthesis, aminoacid and protein biosynthesis. On the other hand, proteins involved in glutathione synthesis, ATP metabolism, response to oxidative stress and protein folding were up-regulated in the presence of cadmium. In addition, we observed that most of the cadmium-sensitive proteins were also regulated via two major cellular thiol redox systems, thioredoxin and glutaredoxin.  相似文献   

11.
Lecanicillium muscarium is a widely occurring entomopathogenic fungus. Laboratory studies were conducted to determine the efficacy of L. muscarium against different instars of Bemisia tabaci on tomato and verbena foliage after two incubation times (3 and 7 days). Significant reduction in B. tabaci numbers were recorded on fungus treated plants (p < 0.001). Second instar B. tabaci proved most susceptible to L. muscarium infection. There was no significant difference in mortality of B. tabaci second instars after either 3 or 7 days exposure to L. muscarium on either host plant. The importance of the speed of pest mortality following treatment and the potential of L. muscarium to be incorporated into an integrated pest management strategy for the biocontrol of B. tabaci on tomato and verbena plants are discussed.  相似文献   

12.
13.
Rice sheath blight, caused by Rhizoctonia solani, is considered a worldwide destructive rice disease and leads to considerable yield losses. A bio-control agent, Paenibacillus kribbensis PS04, was screened to resist against the pathogen. The inhibitory effects were investigated (>80 %) by the growth of the hyphae. Microscopic observation of the hypha structure manifested that the morphology of the pathogenic mycelium was strongly affected by P. kribbensis PS04. To explore essentially inhibitory mechanisms, proteomic approach was adopted to identify differentially expressed proteins from R. solani GD118 in response to P. kribbensis PS04 using two-dimensional gel electrophoresis. Protein profiling was used to identify 13 differential proteins: 10 proteins were found to be down-regulated while 3 proteins were up-regulated. These proteins were involved in material and energy metabolism, antioxidant activity, protein folding and degradation, and cytoskeleton regulation. Among them, material and energy metabolism was differentially regulated by P. kribbensis PS04. Protein expression was separately inhibited by the bio-control agent in oxidation resistance, protein folding and degradation, and cytoskeleton regulation. Proteome changes of the mycelium assist in understanding how the pathogen was directly suppressed by P. kribbensis PS04.  相似文献   

14.
Whiteflies (Hemiptera: Aleyrodidae) are major pests of many crops worldwide. Bemisia tabaci is a cryptic species complex composed of more than 39 putative species. Understanding which putative species of B. tabaci are predominant in an area is vital for effective pest management since they may vary considerably with respect to insecticide resistance, host plant range and virus transmission. Here, for the first time, the genetic diversity, the symbiont diversity and population structure of B. tabaci in Iraq were studied. Fourteen populations were analysed using mitochondrial cytochrome C oxidase subunit 1 (mtCO1) sequencing and microsatellite genotyping. Symbiotic bacteria were identified using 16S rRNA and 23S rRNA sequencing. MtCO1 sequencing detected two putative species of B. tabaci. The predominant putative species in Iraq was Middle East-Asia Minor (MEAM) 1 subcladeB2. In addition, one individual was MEAM1-subcladeB. The second putative species was a single individual of MEAM2. The microsatellite data indicated low genetic diversity, with no biologically informative clustering. All MEAM1 individuals harboured one primary symbiont, Portiera aleyrodidarum, and most (96%) have two secondary symbionts: Hamiltonella sp. and Rickettsia sp. This study has identified the genetic diversity and population structure of B. tabaci in Iraq. Further investigation is needed to update the pest status of B. tabaci in this region. The current data, combined with investigations into the capacity of the various putative species to transmit plant viruses, especially tomato yellow leaf curl virus, will aid pest management and horticultural production.  相似文献   

15.
16.
The sweetpotato whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), is a major pest on greenhouse crops including sweet pepper (Capsicum annuum L.), which is one of the leading greenhouse crops in South Korea. Synthetic insecticides, especially the neonicotinoids, have been used to conventionally control this pest. There have been continuous efforts to develop plant‐derived compounds as insecticides, deterrents, and repellents to reduce spraying synthetic insecticides. To develop new plant‐extract insecticides, we investigated the insecticidal effects of Perilla sp. (Perilla frutescens var. crispa) extract on B. tabaci in laboratory conditions. The Perilla sp. extract induced 90 % mortality within one hour, but phytotoxicity symptoms on sweet pepper leaves were also observed. We monitored the population change and spatial distribution of adult B. tabaci in an experimental sweet pepper greenhouse using yellow sticky traps, and analyzed distribution patterns by spatial analysis with distance indices (SADIE). Based on monitoring data and SADIE analysis, we concluded that B. tabaci aggregated near the greenhouse entrances, and it showed aggregation and association pattern as time passed. Therefore, we recommend spraying Perilla sp. extract near the entrances or wild host before the pest population penetrates. It will be one of the alternative pest management strategies to reduce B. tabaci population with fewer negative effects from chemical insecticide. Further study is required to reduce the phytotoxicity symptoms from Perilla sp. extract spray and insecticidal effect should be evaluated under field conditions.  相似文献   

17.
Soil salinity and alkalinity are common constraints to crop productivity in low rainfall regions of the world. However, the physiological difference of plant response to these two stresses was short of deep investigation. This study has identified a set of differentially expressed proteins of tomato root exploring to NaCl and NaHCO3 stress by iTRAQ (isobaric tags for relative and absolute quantitation) assay. A total of 313 proteins responsive to NaCl and NaHCO3 were observed. Among these proteins, 70 and 114 proteins were up-regulated by salt and alkali stress, respectively. While down-regulated proteins were 80 in salt treatment and 83 in alkali treatment. Only 39 up-regulated proteins and 30 down-regulated proteins were shared by salt and alkali stresses. The majority of the down-regulated proteins accounted for metabolism and energy conversion, and the up-regulated proteins were involved in signaling or transport. Compared with salt stress, alkali stress down-regulated proteins related with the respiratory metabolism, fatty acid oxidative metabolism and nitrogenous metabolism of tomato roots, and up-regulated protein with the reactive oxygen species (ROS) scavenging and ion transport. This study provides a novel insight into tomato roots response to salt and alkali stress at a large translation level.  相似文献   

18.
19.
Abstract The sweetpotato whitefly, Bemisia tabaci, has been a destructive pest in China for over the past two decades. It is an extremely polyphagous insect, being recorded feeding on hundreds of host plants around the world. Potential host plants and natural enemies of B. tabaci in the south, southeast, middle, north and northwest of China were investigated during the last decade. In total 361 plant species from 89 families were recorded in our surveys. Plants in the families Compositae, Cruciferae, Cucurbitaceae, Solanaceae and Leguminosae were the preferred host species for B. tabaci, which therefore suffered much damage from this devastating pest due to their high populations. In total, 56 species of parasitoids, 54 species of arthropod predators and seven species of entomopathogenic fungi were recorded in our surveys. Aphelinid parasitoids from Encarsia and Eretmocerus genera, lady beetles and lacewings in Coleoptera and Neuroptera were found to be the dominant arthropod predators of B. tabaci in China. The varieties of host plant, their distribution and the dominant species of natural enemies of B. tabaci in different regions of China are discussed.  相似文献   

20.
【目的】研究锌离子缺乏对肺炎链球菌的影响,找到其适应性生长机制。【方法】以肺炎链球菌为模型,利用加锌和不加锌的培养基对细菌进行培养,收集细胞蛋白,采用双向凝胶电泳,结合金属亲和层析和质谱技术鉴定差异表达蛋白,进而通过生物信息学分析蛋白质相互关系,从中找到细菌适应锌离子匮乏条件的关键代谢通路和蛋白。【结果】测定了在限制培养条件下肺炎链球菌的最适生长浓度,建立了锌离子调控蛋白双向凝胶电泳图谱,鉴定到了96个差异表达蛋白斑点,共67个差异蛋白,其中32个表达下调,35个表达上调,锌离子调控蛋白的作用可能主要体现在糖代谢、核酸代谢、氧化还原作用、辅助蛋白质翻译、合成及折叠等方面。建立了锌结合蛋白的差异表达图谱,鉴定到了10个差异表达蛋白斑点,共7个差异蛋白,其中1个表达下调,6个表达上调。锌离子结合蛋白的作用可能主要体现在应对压力、蛋白质折叠和转运、氨基酸代谢等方面。【结论】肺炎链球菌主要通过调控碳水化合物代谢和核酸代谢等多个代谢通路来应对宿主锌金属离子匮乏的环境,从而使自身能够存活并对宿主形成感染。本研究为揭示细菌在宿主环境,特别是金属离子匮乏条件下的适应性生长机制提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号