首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeast peroxisomal NADP+-specific isocitrate dehydrogenase (IDP3) contains a canonical type I peroxisomal targeting sequence (a carboxyl-terminal Cys-Lys-Leu tripeptide), and provides the NADPH required for β-oxidation of some fatty acids in that organelle. Cytosolic yeast IDP2 carrying a PTS1 (IDP2+CKL) was only partially localized to peroxisomes, and the enzyme was able to function in lieu of either peroxisomal IDP3 or cytosolic IDP2. The analogous isocitrate dehydrogenase enzyme (IDPA) from Aspergillus nidulans, irrespective of the presence or absence of a putative PTS1, was found to exhibit patterns of dual compartmental distribution and of dual function in yeast similar to those observed for IDP2+CKL. To test a potential cellular limit on peroxisomal levels, authentic yeast IDP3, which is normally strictly peroxisomal, was over-expressed. This also resulted in dual distribution and function of the enzyme in both the cytosol and in peroxisomes, supporting the possibility of a restriction on organellar amounts of IDP.  相似文献   

2.
Three differentially compartmentalized isozymes of isocitrate dehydrogenase (mitochondrial IDP1, cytosolic IDP2, and peroxisomal IDP3) in the yeast Saccharomyces cerevisiae catalyze the NADP(+)-dependent oxidative decarboxylation of isocitrate to form alpha-ketoglutarate. These enzymes are highly homologous but exhibit some significant differences in physical and kinetic properties. To examine the impact of these differences on physiological function, we exchanged promoters and altered organellar targeting information to obtain expression of IDP2 and IDP3 in mitochondria and of IDP1 and IDP3 in the cytosol. Physiological function was assessed as complementation by mislocalized isozymes of defined growth defects of isocitrate dehydrogenase mutant strains. These studies revealed that the IDP isozymes are functionally interchangeable for glutamate synthesis, although mitochondrial localization has a positive impact on this function during fermentative growth. However, IDP2, whether located in mitochondria or in the cytosol, provided the highest level of defense against endogenous or exogenous oxidative stress.  相似文献   

3.
To compare kinetic properties of homologous isozymes of NADP+-specific isocitrate dehydrogenase, histidine-tagged forms of yeast mitochondrial (IDP1) and cytosolic (IDP2) enzymes were expressed and purified. The isozymes were found to share similar apparent affinities for cofactors. However, with respect to isocitrate, IDP1 had an apparent Km value approximately 7-fold lower than that of IDP2, whereas, with respect to alpha-ketoglutarate, IDP2 had an apparent Km value approximately 10-fold lower than that of IDP1. Similar Km values for substrates and cofactors in decarboxylation and carboxylation reactions were obtained for IDP2, suggesting a capacity for bidirectional catalysis in vivo. Concentrations of isocitrate and alpha-ketoglutarate measured in extracts from the parental strain were found to be similar with growth on different carbon sources. For mutant strains lacking IDP1, IDP2, and/or the mitochondrial NAD+-specific isocitrate dehydrogenase (IDH), metabolite measurements indicated that major cellular flux is through the IDH-catalyzed reaction in glucose-grown cells and through the IDP2-catalyzed reaction in cells grown with a nonfermentable carbon source (glycerol and lactate). A substantial cellular pool of alpha-ketoglutarate is attributed to IDH function during glucose growth, and to both IDP1 and IDH function during growth on glycerol/lactate. Complementation experiments using a strain lacking IDH demonstrated that overexpression of IDP1 partially compensated for the glutamate auxotrophy associated with loss of IDH. Collectively, these results suggest an ancillary role for IDP1 in cellular glutamate synthesis and a role for IDP2 in equilibrating and maintaining cellular levels of isocitrate and alpha-ketoglutarate.  相似文献   

4.
The n-alkane-assimilating diploid yeast, Candida tropicalis, possesses two acetoacetyl-CoA thiolase (Thiolase I) isozymes encoded by one allele: peroxisomal and cytosolic Thiolase Is encoded by both CT-T1A and CT-T1B. To clarify the function of peroxisomal and cytosolic. Thiolase Is, the site-directed mutation leading Thiolase I ΔC6 without a putative C-terminal peroxisomal targeting signal was introduced on CT-T1A locus in the ct-t1bΔ-null mutant. The C-terminus-truncated Thiolase I was active and solely present in the cytosol. Although the ct-t1aΔ/t1bΔ-null mutants showed mevalonate auxotrophy, the mutants having the C-terminus-truncated Thiolase I did not require mevalonate for growth, as did the strains having cytosolic Thiolase I. These results demonstrated that the presence of Thiolase I in the cytoplasm is indispensable for the sterol synthesis in this yeast. It is of greater interest that peroxisomal and cytosolic Thiolase I isozymes, products of the same genes, play different roles in the respective compartments, although further investigations will be necessary to analyze how to be sorted into peroxisomes and the cytosol.  相似文献   

5.
Errors in protein synthesis, so-called phenotypic mutations, are orders-of-magnitude more frequent than genetic mutations. Here, we provide direct evidence that alternative protein forms and phenotypic variability derived from translational errors paved the path to genetic, evolutionary adaptations via gene duplication. We explored the evolutionary origins of Saccharomyces cerevisiae IDP3 - an NADP-dependent isocitrate dehydrogenase mediating fatty acids ß-oxidation in the peroxisome. Following the yeast whole genome duplication, IDP3 diverged from a cytosolic ancestral gene by acquisition of a C-terminal peroxisomal targeting signal. We discovered that the pre-duplicated cytosolic IDPs are partially localized to the peroxisome owing to +1 translational frameshifts that bypass the stop codon and unveil cryptic peroxisomal targeting signals within the 3’-UTR. Exploring putative cryptic signals in all 3’-UTRs of yeast genomes, we found that other enzymes related to NADPH production such as pyruvate carboxylase 1 (PYC1) might be prone to peroxisomal localization via cryptic signals. Using laboratory evolution we found that these translational frameshifts are rapidly imprinted via genetic single base deletions occurring within the very same gene location. Further, as exemplified here, the sequences that promote translational frameshifts are also more prone to genetic deletions. Thus, genotypes conferring higher phenotypic variability not only meet immediate challenges by unveiling cryptic 3’-UTR sequences, but also boost the potential for future genetic adaptations.  相似文献   

6.
The plastid and cytosolic isozymes of enolase from developing endosperm of castor oil seeds, Ricinus communis L. cv. Baker 296, were separated and partially purified. Each purified isozyme had a specific activity of approximately 200 μmol min?1 mg protein. The isozymes have similar pH optima for the forward reaction, but different optima for the reverse reaction. The divalent metal specificity is the same for both isozymes. In addition to differences in charge, the isozymes can be distinguished by their different kinetic constants, thermostability and sensitivity to fluoride inhibition. Antibodies against yeast enolase isozyme I cross-react with Ricinus plastid enolase but not with the cytosolic isozyme.  相似文献   

7.
Isozymes of pyruvate kinase (PK) have been isolated from developing castor bean endosperm. One isozyme, PKc, is localized in the cytosol, and the other, PKp, is in the plastid. Both isozymes need monovalent and divalent cations for activity, requirements which can be filled by K+ and Mg2+. Both isozymes are inhibited by citrate, pyruvate, and ATP. PKc has a much broader pH profile than PKp and is also more stable. Both have the same Km (0.05 millimolar) for PEP, but PKp has a 10-fold higher Km (0.3 millimolar) for ADP than PKc (0.03 millimolar). PKc also has a higher affinity for alternate nucleotide substrates than PKp. The two isozymes have different kinetic mechanisms. Both have an ordered sequential mechanism and bind phosphoenolpyruvate before ADP. However, the plastid isozyme releases ATP first, whereas pyruvate is the first product released from the cytosolic enzyme. The properties of the two isozymes are similar to those of their counterparts in green tissue.  相似文献   

8.
Bovine liver mitochondrial aldehyde dehydrogenase (aldehyde: NAD+ oxidoreductase, EC 1.2.1.3) has been purified to homogeneity by conventional purification procedures. The enzyme was found to have a molecular weight of 215,000 based on gel filtration. The protein is composed of polypeptides having the same molecular weight, 54,000 and thus it appears to consist of four subunits of equal size. The enzyme exhibited a broad aldehyde specificity, oxidizing irreversibly a wide variety of aliphatic and aromatic aldehydes to corresponding carboxylic acids. Km values for straight-chain saturated aldehydes were below 0.1 µm, and relatively constant independent of the carbon chain lengths of the aldehydes. The maximum velocities for saturated aldehydes also did not vary appreciably with their carbon chain lengths. Maximum activity was observed at pH 9.3 and 50°C. The enzyme activity was affected by some divalent cations. Ca2+ enhanced the activity, while Mg2+ inhibited it. The enzyme was quite stable at neutral pH, but was unstable above pH 9 or below pH 6. Bovine liver has three isozymes of aldehyde dehydrogenase which are located in the mitochondrial, cytosolic, and microsomal fractions. Comparison of enzymic properties among these isozymes and yeast enzyme indicates that the mitochondrial enzyme is very suitable for improving the objectionable flavor due to aldehydes in foods.  相似文献   

9.
Streptococcus mutans Ingbritt (serotype c) was found to secrete basic glucosyltranserase (sucrose: 1,6-α-D-glucan 3-α- and 6-α- glucosyltransferase). The enzyme preparation obtained by ethanol fractionation, DEAE Bio-Gel A chromatography, chromatofocusing and preparative isoelectric focusing was composed of three isozymes with slightly different isoelectric points (pI 8.1–8.4). The molecular weight was estimated to be 151 000 by SDS-polyacrylamide gel electrophoresis. The specific activity of the enzyme was 9.8 IU per mg of protein and the optimum pH was 6.5. The enzyme was activated 2.4-fold by commercial dextran T10, and had Km values of 7.1 μM for the dextran and 4.3 mM for sucrose. Glucan was de novo synthesized from sucrose by the enzyme and found to be 1,6- α-D-glucan with 17.7% of 1,3,6-branching structure by a gas-liquid chromatography-mass spectroscopy.  相似文献   

10.
The n-alkane-assimilating diploid yeast Candida tropicalis possesses three thiolase isozymes encoded by two pairs of alleles: cytosolic and peroxisomal acetoacetyl-coenzyme A (CoA) thiolases, encoded by CT-T1A and CT-T1B, and peroxisomal 3-ketoacyl-CoA thiolase, encoded by CT-T3A and CT-T3B. The physiological functions of these thiolases have been examined by gene disruption. The homozygous ct-t1aΔ/t1bΔ null mutation abolished the activity of acetoacetyl-CoA thiolase and resulted in mevalonate auxotrophy. The homozygous ct-t3aΔ/t3bΔ null mutation abolished the activity of 3-ketoacyl-CoA thiolase and resulted in growth deficiency on n-alkanes (C10 to C13). All thiolase activities in this yeast disappeared with the ct-t1aΔ/t1bΔ and ct-t3aΔ/t3bΔ null mutations. To further clarify the function of peroxisomal acetoacetyl-CoA thiolases, the site-directed mutation leading acetoacetyl-CoA thiolase without a putative C-terminal peroxisomal targeting signal was introduced on the CT-T1A locus in the ct-t1bΔ null mutant. The truncated acetoacetyl-CoA thiolase was solely present in cytoplasm, and the absence of acetoacetyl-CoA thiolase in peroxisomes had no effect on growth on all carbon sources employed. Growth on butyrate was not affected by a lack of peroxisomal acetoacetyl-CoA thiolase, while a retardation of growth by a lack of peroxisomal 3-ketoacyl-CoA thiolase was observed. A defect of both peroxisomal isozymes completely inhibited growth on butyrate. These results demonstrated that cytosolic acetoacetyl-CoA thiolase was indispensable for the mevalonate pathway and that both peroxisomal acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase could participate in peroxisomal β-oxidation. In addition to its essential contribution to the β-oxidation of longer-chain fatty acids, 3-ketoacyl-CoA thiolase contributed greatly even to the β-oxidation of a C4 substrate butyrate.  相似文献   

11.
A milk coagulating protease was purified ∼10.2-fold to apparent homogeneity from ginger rhizomes in 34.9% recovery using ammonium sulfate fractionation, together with ion exchange and size exclusion chromatographic techniques. The molecular mass of the purified protease was estimated to be ∼36 kDa by SDS-PAGE, and exhibited a pI of 4.3. It is a glycoprotein with 3% carbohydrate content. The purified enzyme showed maximum activity at pH 5.5 and at a temperature of ∼60 °C. Its protease activity was strongly inhibited by iodoacetamide, E-64, PCMB, Hg2+ and Cu2+. Inhibition studies and N-terminal sequence classified the enzyme as a member of the cysteine proteases. The cleavage capability of the isolated enzyme was higher for αs-casein followed by β- and κ-casein. The purified enzyme differed in molecular mass, pI, carbohydrate content, and N-terminal sequence from previously reported ginger proteases. These results indicate that the purified protease may have potential application as a rennet substitute in the dairy industry.  相似文献   

12.
A glucose-tolerant β-glucosidase was purified to homogeneity from prune (Prunus domestica) seeds by successive ammonium sulfate precipitation, hydrophobic interaction chromatography and anion-exchange chromatography. The molecular mass of the enzyme was estimated to be 61 kDa by SDS-PAGE and 54 kDa by gel permeation chromatography. The enzyme has a pI of 5.0 by isoelectric focusing and an optimum activity at pH 5.5 and 55 °C. It is stable at temperatures up to 45 °C and in a broad pH range. Its activity was completely inhibited by 5 mM of Ag+ and Hg2+. The enzyme hydrolyzed both p-nitrophenyl β-d-glucopyranoside with a Km of 3.09 mM and a Vmax of 122.1 μmol/min mg and p-nitrophenyl β-d-fucopyranoside with a Km of 1.65 mM and a Vmax of 217.6 μmol/min mg, while cellobiose was not a substrate. Glucono-δ-lactone and glucose competitively inhibited the enzyme with Ki values of 0.033 and 468 mM, respectively.  相似文献   

13.
An α,β-dicarbonyl reductase activity was purified from Saccharomyces cerevisiae and identified as the cytosolic enzyme d-Arabinose dehydrogenase (ARA1) by MALDI-TOF/TOF. Size exclusion chromatography analysis of recombinant Ara1p revealed that this protein formed a homodimer. Ara1p catalyzed the reduction of the reactive α,β-dicarbonyl compounds methylglyoxal, diacetyl, and pentanedione in a NADPH dependant manner. Ara1p had apparent Km values of ∼ 14 mM, 7 mM and 4 mM for methylglyoxal, diacetyl and pentanedione respectively, with corresponding turnover rates of 4.4, 6.9 and 5.9 s− 1 at pH 7.0. pH profiling showed that Ara1p had a pH optimum of 4.5 for the diacetyl reduction reaction. Ara1p also catalyzed the NADP+ dependant oxidation of acetoin; however this back reaction only occurred at alkaline pH values. That Ara1p was important for degradation of α,β-dicarbonyl substrates was further supported by the observation that ara1-Δ knockout yeast mutants exhibited a decreased growth rate phenotype in media containing diacetyl.  相似文献   

14.
We studied anionic inhibition of the reaction CO2 + OH?? HCO3? catalyzed by human red cell carbonic anhydrase B (I) and C (II), using iodide and cyanate. In the forward reaction with respect to CO2 as the substrate, inhibition was mixed but favoring noncompetitive; the back reaction, with HCO3? as the substrate, yielded strict competitive kinetics. Mean inhibition constants, KI, in the pH range 7.2–7.5 are: iodide, 0.5 mm for enzyme B and 16 mm for C; cyanate, 0.8 μm for B and 20 μm for C. When OH? was considered as the substrate for the forward reaction, cyanate and chloride behaved as competitive inhibitors. The true inhibition constant (KI0) for cyanate (calculated for infinitely low OH?) is 0.4 μm for enzyme B and 4 μm for C. Apart from the difference in anion affinity and some 10-fold higher activity of C > B, the isozymes showed similar patterns of inhibition. Data agree with generally proposed mechanisms describing the active site as ZnH2O with pKa of about 7.  相似文献   

15.
Deviations from physiological pH (∼pH 7.2) as well as altered Ca2+ signaling play important roles in immune disease and cancer. One of the most ubiquitous pathways for cellular Ca2+ influx is the store-operated Ca2+ entry (SOCE) or Ca2+ release-activated Ca2+ current (ICRAC), which is activated upon depletion of intracellular Ca2+ stores. We here show that extracellular and intracellular changes in pH regulate both endogenous ICRAC in Jurkat T lymphocytes and RBL2H3 cells, and heterologous ICRAC in HEK293 cells expressing the molecular components STIM1/2 and Orai1/2/3 (CRACM1/2/3). We find that external acidification suppresses, and alkalization facilitates IP3-induced ICRAC. In the absence of IP3, external alkalization did not elicit endogenous ICRAC but was able to activate heterologous ICRAC in HEK293 cells expressing Orai1/2/3 and STIM1 or STIM2. Similarly, internal acidification reduced IP3-induced activation of endogenous and heterologous ICRAC, while alkalization accelerated its activation kinetics without affecting overall current amplitudes. Mutation of two aspartate residues to uncharged alanine amino acids (D110/112A) in the first extracellular loop of Orai1 significantly attenuated both the inhibition of ICRAC by external acidic pH as well as its facilitation by alkaline conditions. We conclude that intra- and extracellular pH differentially regulates ICRAC. While intracellular pH might affect aggregation and/or binding of STIM to Orai, external pH seems to modulate ICRAC through its channel pore, which in Orai1 is partially mediated by residues D110 and D112.  相似文献   

16.
The distribution of some enzymes between peroxisomes and cytosol, or a dual localization in both these compartments, can be difficult to reconcile. We have used photobleaching in live cells expressing green fluorescent protein (GFP)-fusion proteins to show that imported bona fide peroxisomal matrix proteins are retained in the peroxisome. The high mobility of the GFP-fusion proteins in the cytosol and absence of peroxisomal escape makes it possible to eliminate the cytosolic fluorescence by photobleaching, to distinguish between exclusively cytosolic proteins and proteins that are also present at low levels in peroxisomes. Using this technique we found that GFP tagged bile acid-CoA:amino acid N-acyltransferase (BAAT) was exclusively localized in the cytosol in HeLa cells. We conclude that the cytosolic localization was due to its carboxyterminal non-consensus peroxisomal targeting signal (-SQL) since mutation of the -SQL to -SKL resulted in BAAT being efficiently imported into peroxisomes.  相似文献   

17.
Transport of acetyl-CoA between intracellular compartments is mediated by carnitine acetyltransferases (Cats) that reversibly link acetyl units to the carrier molecule carnitine. The genome of the opportunistic pathogenic yeast Candida albicans encodes several (putative) Cats: the peroxisomal and mitochondrial Cat2 isoenzymes encoded by a single gene and the carnitine acetyltransferase homologs Yat1 and Yat2. To determine the contributions of the individual Cats, various carnitine acetyltransferase mutant strains were constructed and subjected to phenotypic and biochemical analyses on different carbon sources. We show that mitochondrial Cat2 is required for the intramitochondrial conversion of acetylcarnitine to acetyl-CoA, which is essential for a functional tricarboxylic acid cycle during growth on oleate, acetate, ethanol, and citrate. Yat1 is cytosolic and contributes to acetyl-CoA transport from the cytosol during growth on ethanol or acetate, but its activity is not required for growth on oleate. Yat2 is also cytosolic, but we were unable to attribute any function to this enzyme. Surprisingly, peroxisomal Cat2 is essential neither for export of acetyl units during growth on oleate nor for the import of acetyl units during growth on acetate or ethanol. Oxidation of fatty acids still takes place in the absence of peroxisomal Cat2, but biomass formation is absent, and the strain displays a growth delay on acetate and ethanol that can be partially rescued by the addition of carnitine. Based on our results, we present a model for the intracellular flow of acetyl units under various growth conditions and the roles of each of the Cats in this process.  相似文献   

18.
The Saccharomyces cerevisiae DJP1 gene encodes a cytosolic protein homologous to Escherichia coli DnaJ. DnaJ homologues act in conjunction with molecular chaperones of the Hsp70 protein family in a variety of cellular processes. Cells with a DJP1 gene deletion are viable and exhibit a novel phenotype among cytosolic J-protein mutants in that they have a specific impairment of only one organelle, the peroxisome. The phenotype was also unique among peroxisome assembly mutants: peroxisomal matrix proteins were mislocalized to the cytoplasm to a varying extent, and peroxisomal structures failed to grow to full size and exhibited a broad range of buoyant densities. Import of marker proteins for the endoplasmic reticulum, nucleus, and mitochondria was normal. Furthermore, the metabolic adaptation to a change in carbon source, a complex multistep process, was unaffected in a DJP1 gene deletion mutant. We conclude that Djp1p is specifically required for peroxisomal protein import.  相似文献   

19.
Electrophoretic and activity variants have been observed for stomach and testis aldehyde dehydrogenases, respectively, among inbred strains of the house mouse (Mus musculus). Genetic evidence was obtained for two new loci encoding these isozymes (designated Ahd-4 and Ahd-6, respectively, for the stomach and testis isozymes) which segregated independently of a number of mouse gene markers, including Ahd-1 (encoding mitochondrial aldehyde dehydrogenase) on chromosome 4, ep (pale ears), a marker for chromosome 19, on which Ahd-2 (encoding liver cytosolic aldehyde dehydrogenase) has been previously localized, and Adh-3 (encoding the stomach-specific isozyme of alcohol dehydrogenase) on chromosome 3. Recombination studies have indicated, however, that Ahd-4 and Ahd-6 are distinct but closely linked loci on the mouse genome. An extensive survey of the distribution of Ahd-1, Ahd-2, Ahd-4, and Ahd-6 alleles among 56 strains of mice is reported. No variants have been observed, so far, for the microsomal (AHD-3) and mitochondrial/cytosolic (AHD-5) isozymes previously described. This study, in combination with previous investigations on mouse aldehyde dehydrogenases, provides evidence for six genetic loci for this enzyme.  相似文献   

20.
The thermophilic Bacillus licheniformis strain JS was isolated from a bed of mushrooms, Pleurotus sajor-caju. The organism could produce a novel, single-component, thermostable chitinase that was purified by ion-exchange chromatography using DEAE-cellulose in 7.64% yield and in an 8.1-fold enhancement in purity. Its molecular weight is 22 kDa. The enzyme is a chitobiosidase, since the chitin hydrolysate is NI,NII-diacetylchitobiose. The optimum temperature for enzyme activity is 55 °C, and the optimum pH is 8.0. It was completely inhibited by Hg2+ ions whereas Co2+ ions served as an activator. The thermostability of this enzyme is important in the bioconversion of chitinous waste and for the production of chitooligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号