首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the variability of foraging behavior within a population of predators is important for determining their role in the ecosystem and how they may respond to future ecosystem changes. However, such variability has seldom been studied in harbor seals on a fine spatial scale (<30 km). We used a combination of standard and Bayesian generalized linear mixed models to explore how environmental variables influenced the dive behavior of harbor seals. Time-depth recorders were deployed on harbor seals from two haul-out sites in the Salish Sea in 2007 (n = 18) and 2008 (n = 11). Three behavioral bout types were classified from six dive types within each bout; however, one of these bout types was related to haul-out activity and was excluded from analyses. Deep foraging bouts (Type I) were the predominant type used throughout the study; however, variation in the use of bout types was observed relative to haul-out site, season, sex, and light (day/night). The proportional use of Type I and Type II (shallow foraging/traveling) bouts differed dramatically between haul-out sites, seasons, sexes, and whether it was day or night; individual variability between seals also contributed to the observed differences. We hypothesize that this variation in dive behavior was related to habitat or prey specialization by seals from different haul-out sites, or individual variability between seals in the study area. The results highlight the potential influence of habitat and specialization on the foraging behavior of harbor seals, and may help explain the variability in diet that is observed between different haul-out site groups in this population.  相似文献   

2.
Rapid development of foraging ability is critical for phocids. In northern elephant seals Mirounga angustirostris , juvenile survivorship is low compared with adults and foraging difficulties are potentially associated with increased mortality. At Año Nuevo, California, foraging behavior of nine juvenile females during their third foraging migration and five juvenile females on their fourth foraging migration were documented using a variety of commercially available and custom time depth recorders. Foraging success, diving ability, time at depth, bouts of behavior and body composition changes were compared between trips to sea. There were no significant differences in foraging success measured as mass gain between the third and fourth trips to sea. There were differences in how energy was deposited between lean and adipose tissue compartments. Diving ability developed between trips to sea, reflected in significant increases in depth, dive duration and bottom time. Development also occurred within trips to sea. Depth, dive duration and bottom time increased with time at sea. Aerobic capacity appears to increase between the third and fourth trip, with a significantly increased percentage of total time submerged and a significantly lower diving rate. All juveniles on the fourth trip and four out of nine juveniles on the third trip followed marked diel patterns, foraging deep during the day and shallow at night. Like adults, juveniles appeared to stay primarily aerobic with surface intervals independent of dive durations. These results confirm that female juvenile northern elephant seals undergo important developmental changes in foraging behavior between the third and fourth trip, but these changes do not significantly impact foraging success.  相似文献   

3.
SUMMER DIVING BEHAVIOR OF MALE WALRUSES IN BRISTOL BAY, ALASKA   总被引:1,自引:0,他引:1  
Pacific walruses ( Odobenus rosmarus divergens ) make trips from ice or land haul-out sites to forage for benthic prey. We describe dive and trip characteristics from time-depth-recorder data collected over a one-month period during summer from four male Pacific walruses in Bristol Bay, Alaska. Dives were classified into four types. Shallow (4 m), short (2.7 min), square-shaped dives accounted for 11% of trip time, and many were probably associated with traveling. Shallow (2 m) and very short (0.5 min) dives composed only 1% of trip time. Deep (41 m), long (7.2 min), square-shaped dives accounted for 46% of trip time and were undoubtedly associated with benthic foraging. V-shaped dives ranged widely in depth, were of moderate duration (4.7 min), and composed 3% of trip time. These dives may have been associated with navigation or exploration of the seafloor for potential prey habitat. Surface intervals between dives were similar among dive types, and generally lasted 1–2 min. Total foraging time was strongly correlated with trip duration and there was no apparent diel pattern of diving in any dive type among animals. We found no correlation between dive duration and postdive surface interval within dive types, suggesting that diving occurred within aerobic dive limits. Trip duration varied considerably within and among walruses (0.3–9.4 d), and there was evidence that some of the very short trips were unrelated to foraging. Overall, walruses were in the water for 76.6% of the time, of which 60.3% was spent diving.  相似文献   

4.
We developed an automated method using depth and one axis of body acceleration data recorded by animal-borne data loggers to identify activities of penguins over long-term deployments. Using this technique, we evaluated the activity time budget of emperor penguins (n = 10) both in water and on sea ice during foraging trips in chick-rearing season. During the foraging trips, emperor penguins alternated dive bouts (4.8±4.5 h) and rest periods on sea ice (2.5±2.3 h). After recorder deployment and release near the colony, the birds spent 17.9±8.4% of their time traveling until they reached the ice edge. Once at the ice edge, they stayed there more than 4 hours before the first dive. After the first dive, the mean proportions of time spent on the ice and in water were 30.8±7.4% and 69.2±7.4%, respectively. When in the water, they spent 67.9±3.1% of time making dives deeper than 5 m. Dive activity had no typical diurnal pattern for individual birds. While in the water between dives, the birds had short resting periods (1.2±1.7 min) and periods of swimming at depths shallower than 5 m (0.25±0.38 min). When the birds were on the ice, they primarily used time for resting (90.3±4.1% of time) and spent only 9.7±4.1% of time traveling. Thus, it appears that, during foraging trips at sea, emperor penguins traveled during dives >5 m depth, and that sea ice was primarily used for resting. Sea ice probably provides refuge from natural predators such as leopard seals. We also suggest that 24 hours of sunlight and the cycling of dive bouts with short rest periods on sea ice allow emperor penguins to dive continuously throughout the day during foraging trips to sea.  相似文献   

5.
Diving and circadian behaviour patterns of 7 free-ranging Saimaa ringed sealsPhoca hispida saimensis Nordquist, 1899 were examined by VHF-radiotelemetry during open-water seasons between May and November in Lake Saimaa, eastern Finland. The mean recorded dive duration ranged from 2.8 to 6.5 min, with a maximum of 21 min. The mean dive depth ranged from 9.8 to 15.7 m, with maximum of 39.6 m. The maximum dive depth of each seal was limited by water depth in the study area. The dive depths were positively correlated with dive duration and body mass of the seal. Five different dive types were defined, as based on their depth-time characteristics, each falling into one of the three functional categories: travelling, feeding, and resting. Long duration diving bouts occurred mostly at night and were presumed to be resting dives. Saimaa ringed seals exhibited a circadian pattern of haul-out behaviour that shifted seasonally. During molting (May–June) the seals hauled-out both day and night, but later in summer haul-out was more frequent at night.  相似文献   

6.
We describe the features of waters where seabirds were feeding by sampling vertical water temperature profiles with data loggers mounted on five Brünnich's Guillemots in Svalbard, Norway. The guillemots foraged in a cold water (−0.5–0.5°C SST (sea surface temperature)) by making 1.8 dive bouts in short trips (32–257 min duration) as well as in moderate (0.5–2.0°C SST) and warm waters (2.5–4.0°C SST) by making 6.0 dive bouts during long trips (411–688 min duration). Judging from outbound flying time (15.7–24.4 min), time between dive bouts (23.9–43.3 min) and water types, the birds probably fed in fjord or coastal waters during short trips and in both coastal and offshore waters during long trips. Water temperature and diving behaviour can be simultaneously recorded by small data loggers, which therefore will provide useful information on marine features and foraging activity of top predators.  相似文献   

7.
Ontogeny of diving and foraging behavior in marine top predators is poorly understood despite its importance in population recruitment. This lack of knowledge is partly due to the difficulties of monitoring juveniles in the wild, which is linked to high mortality early in life. Pinnipeds are good models for studying the development of foraging behaviors because juveniles are large enough to robustly carry tracking devices for many months. Moreover, parental assistance is absent after a juvenile departs for its first foraging trip, minimizing confounding effects of parental input on the development of foraging skills. In this study, we tracked 20 newly weaned juvenile southern elephant seals from Kerguelen Islands for up to 338 days during their first trip at sea following weaning. We used a new generation of satellite relay tags, which allow for the transmission of dive, accelerometer, and location data. We also monitored, at the same time, nine adult females from the colony during their post‐breeding trips, in order to compare diving and foraging behaviors. Juveniles showed a gradual improvement through time in their foraging skills. Like adults females, they remarkably adjusted their swimming effort according to temporal changes in buoyancy (i.e., a proxy of their body condition). They also did not appear to exceed their aerobic physiological diving limits, although dives were constrained by their smaller size compared to adults. Changes in buoyancy appeared to also influence their decision to either keep foraging or return to land, alongside the duration of their haul outs and choice of foraging habitat (oceanic vs. plateau). Further studies are thus needed to better understand how patterns in juveniles survival, and therefore elephant seal populations, might be affected by their changes in foraging skills and changes in their environmental conditions.  相似文献   

8.
This study reports some of the first foraging behavior data collected for male fur seals. A nonbreeding male Australian fur seal, Arctocephalus pusillus doriferus , captured at a commercial salmon farm in southern Tasmania, Australia, was relocated 450 km from the site of capture. The animal was equipped with a geolocating time-depth recorder that recorded diving behavior and approximate location for the 14.4 d that it took the seal to travel down the east coast of Tasmania and be recaptured at the salmon farm. During its time at sea, the seal spent most of its time over the relatively shallow shelf waters. It spent 30% of its time ashore on a number of different haul-out sites. The deepest dive was 102 m and the maximum duration was 6.8 min. "Foraging" type dives made up 31.2% of the time at sea and had a median duration of 2.5 min and a median depth of 14 m. The seal performed these dives more commonly during the latter part of its time at sea, while it was on the east coast. Unlike other fur seal species studied to date, there was no evidence of a diurnal foraging pattern; it made dives at all times of the day and night.  相似文献   

9.
This study investigated how female Antarctic fur seals adapt their foraging behavior, over time scales of days, to spatial unpredictability in the distribution of their food. Lactating Antarctic fur seals are central-place foragers that feed on highly patchy but spatially and temporally dynamic food. We measured the foraging distribution of 28 fur seals to test whether variation in foraging trip durations was reflected in variation in the location of foraging and the diving behavior of seals at sea. Based on the maximum distance travelled from the breeding beach, three categories of foraging trips were denned: those to the continental shelf area ( n = 12, median = 71 km), to oceanic water ( n = 11, median =164 km), and to farther offshore oceanic waters ( n = 5, median = 260 km). Trip duration and mean surface speed were positively correlated with the maximum distance travelled from the breeding beach. Seals on longer trips spent proportionally less of their time submerged, but there was no significant difference in the total number of dives or the total time spent foraging by seals in relation to trip duration. Evidence from this study and previous work investigating energy gain suggests that an animal on a longer foraging trip could potentially have a higher mean energy return per dive than a similar animal on a shorter foraging trip. Evidence presented suggests that the type of foraging trip (near or far) is not predetermined by the animal but may be a simple response to the stochastic distribution of the resources available.  相似文献   

10.
In highly dynamic and unpredictable environments such as the Southern Ocean, species that have evolved behaviors that reduce the effects of intra-specific competition may have a selective advantage. This is particularly true when juveniles face disadvantages when foraging due to morphological or physiological limitation, which is the case for many marine mammals. We tracked the at-sea movements of 48 juvenile southern elephant seals (Mirounga leonina) between the ages of 1 and 4 years from the population at Macquarie Island using locations derived from recorded light levels. There were significant differences in the total amount of the Southern Ocean covered by the different age-groups. The younger seals used a smaller area than the older seals. On average, the younger individuals also made more trips to sea than the older seals and did not travel as far on each trip. Females spent more time at sea than males and there were no significant differences between the total areas used by male and females. In summary, younger seals remained closer to the island at all times, and they spent more time in more northerly regions that older seals. These differences in behavior created temporal and spatial segregation between juveniles of different ages. Therefore, we suggest that these temporal and spatial separations help to avoid intra-specific competition for resources on land, space on beaches, and at-sea foraging areas. Such modifications of haul-out timing and behavior enable them to exploit a patchy and unpredictable environment.  相似文献   

11.
To be successful, marine predators must alter their foraging behavior in response to changes in their environment. To understand the impact and severity of environmental change on a population it is necessary to first describe typical foraging patterns and identify the underlying variability that exists in foraging behavior. Therefore, we characterized the at‐sea behavior of adult female California sea lions (n = 32) over three years (2003, 2004, and 2005) using satellite transmitters and time‐depth recorders and examined how foraging behavior varied among years. In all years, sea lions traveled on average 84.7 ± 11.1 km from the rookery during foraging trips that were 3.2 ± 0.3 d. Sea lions spent 42.7% ± 1.9% of their time at sea diving and displayed short (2.2 ± 0.2 min), shallow dives (58.5 ± 8.5 m). Among individuals, there was significant variation in both dive behavior and movement patterns, which was found in all years. Among years, differences were found in trip durations, distances traveled, and some dive variables (e.g., dive duration and bottom time) as sea lions faced moderate variability in their foraging habitat (increased sea‐surface temperatures, decreased upwelling, and potential decreased prey abundance). The flexibility we found in the foraging behavior of California sea lions may be a mechanism to cope with environmental variability among years and could be linked to the continuing growth of sea lion populations.  相似文献   

12.
 Nineteen hooded seals (Cystophora cristata) were tagged with satellite-linked platform terminal transmitters (PTT) on the sea ice near Jan Mayen. Fifteen were instrumented after completion of the moult in July 1992 (five males, ten females, at 71°N, 12°W), and four during breeding in March 1993 (four females, at 69°N, 20°W). Sixteen of the seals were tagged with Satellite-Linked Time-Depth-Recorders (SLTDR), yielding location, dive depth and dive duration data. The average (±SD) longevity of all PTTs was 199±84 days (n=19; range: 43–340 days), and they yielded 12,834 location fixes. Between tagging in July 1992 and pupping in March 1993, two seals remained in or near the ice off the east coast of Greenland for most of the tracking period. However, most of the seals made one or several trips away from the ice edge, mostly to distant waters. These excursions had an average (±SD) duration of 47±22 days (n=46; range: 4–99 days). Eight seals travelled to waters off the Faeroe Islands, three to the continental shelf break south of Bear Island, and three to the Irminger Sea southwest of Iceland. Eleven seals were tracked in the period between breeding (March/April) and moulting (July). Several of these spent extended periods at sea west of the British Isles, or in the Norwegian Sea. Received: 3 August 1994/Accepted: 4 July 1995  相似文献   

13.
Satellite tracking of grey seals (Halichoerus grypus)   总被引:2,自引:0,他引:2  
Three types of Argos satellite transmitter were attached to grey seals ( Halichoerus grypus ) at Donna Nook (South Humberside, UK) between 1985 and 1989 in order to investigate their movements. With the first two transmitters (A and B) the entire package was attached to the seal's back. Seal A was tracked for 29 days but although it was located on sandbanks up to 150 km south-east of Donna Nook, no locations were obtained at sea. Transmitters B and C used a submergence sensor to regulate transmissions. Seal B was tracked for 51 days and remained within 40 km of Donna Nook. A few locations were obtained at sea but all within 10 km of Donna Nook. Transmitter C incorporated a head-mounted aerial in order to increase the number of location fixes when the seal was at sea. This seal was tracked for 111 days, producing an average of 9·1 location fixes per day while at sea. It used two sites 265 km apart and undertook three transits between them. On the second visit to the northern site it made several trips up to 55 km out to sea. The majority of the remainder of the time was spent within 10 km of the haulout sites. Estimates of swimming speed were consistent with values required for minimum cost of transport.  相似文献   

14.
HARBOR SEAL TRACKING AND TELEMETRY BY SATELLITE   总被引:2,自引:0,他引:2  
We tested a satellite Platform Transmitter Terminal (PTT) in the laboratory (on a float and on captive seals) and on a free-ranging harbor seal in the Southern California Bight to investigate the utility of satellite telemetry in documenting seals'at-sea behavior and movements. We used records from a microprocessor-based time-depth recorder (TDR) to interpret location and diving records from the PTT. For the free-ranging harbor seal, we obtained at least one uplink during 70% (while the seal was at sea) to 82% (while she was ashore) of satellite passes and at least one location each day. Of 62 locations determined by Service Argos for the free-ranging seal, 20 were verified from TDR records to have been at sea; these indicated that the seal may have ranged up to 48 km from the haul-out site, although most locations were within 5 km. The accuracies of locations calculated when the seal was at sea (±15 km) were substantially less than when it was ashore (±1.5 km), thus limiting at-sea tracking of seals by satellite to rather gross movements. Fewer transmissions were detected and locations calculated when the seal was actively diving than when it was swimming near the surface as it departed from or returned to the haul-out site. Consequently, average dive durations indicated by the PTT were substantially shorter than those calculated from TDR records. Documentation of foraging areas and detailed at-sea movements using satellite technology may not be possible for pinnipeds unless PTT-transmission rates are increased substantially from the 1 per 45 set maximum rate now permitted by Service Argos.  相似文献   

15.
To better understand how elephant seals (Mirounga angustirostris) use negative buoyancy to reduce energy metabolism and prolong dive duration, we modelled the energetic cost of transit and deep foraging dives in an elephant seal. A numerical integration technique was used to model the effects of swim speed, descent and ascent angles, and modes of locomotion (i.e. stroking and gliding) on diving metabolic rate, aerobic dive limit, vertical displacement (maximum dive depth) and horizontal displacement (maximum horizontal distance along a straight line between the beginning and end locations of the dive) for aerobic transit and foraging dives. Realistic values of the various parameters were taken from previous experimental data. Our results indicate that there is little energetic advantage to transit dives with gliding descent compared with horizontal swimming beneath the surface. Other factors such as feeding and predator avoidance may favour diving to depth during migration. Gliding descent showed variable energy savings for foraging dives. Deep mid-water foraging dives showed the greatest energy savings (approx. 18%) as a result of gliding during descent. In contrast, flat-bottom foraging dives with horizontal swimming at a depth of 400m showed less of an energetic advantage with gliding descent, primarily because more of the dive involved stroking. Additional data are needed before the advantages of gliding descent can be fully understood for male and female elephant seals of different age and body composition. This type of data will require animal-borne instruments that can record the behaviour, three-dimensional movements and locomotory performance of free-ranging animals at depth.  相似文献   

16.
Consistent intra‐population variability in foraging behaviour is found among a wide range of taxa. Such foraging specialisations are common among marine vertebrates, yet it is not clear how individuals repeatedly locate prey or foraging sites at ocean‐wide scales. Using GPS and time‐depth loggers we studied the fine‐scale foraging behaviour of central‐place northern gannets Morus bassanus at two large colonies. First, we estimated the degree of consistency in individual foraging routes and sites across repeated trips. Second, we tested for individual differences in searching behaviour in response to environmental covariates using reaction norms, estimated from mixed effect models. Adult gannets tracked over multiple foraging trips showed repeatable between‐individual differences in terminal points and departure angles of foraging trips, but low repeatability in trip duration and trip length. Importantly, individual birds showed highly repeatable dive locations, with consistently different environmental conditions (such as copepod abundance), suggesting a high degree of foraging site specialisation. Gannets also showed between‐individual differences in searching behaviour along environmental gradients, such that individuals intensified searching under different conditions. Together these results suggest that widespread individual foraging consistency may represent specialisation and be linked with individual responses to environmental conditions. Such divergent searching behaviour could provide a mechanism by which consistent foraging behaviour arises and is maintained among animals that forage across large spatial scales.  相似文献   

17.
18.
During the chick-rearing period, little auks Alle alle adopt a bimodal foraging strategy, alternating long trips with several short ones. It has been postulated that they reach more remote areas during long feeding trips than during short ones. However, the range of their foraging flights has never actually been measured. The aims of this study were to find the exact location of the little auk feeding grounds and to investigate whether they reach remote areas during long foraging trips using miniature GPS and temperature loggers. The study was conducted in 2009 in Magdalenefjorden (79°34′N, 11°04′E), one of the main breeding grounds of little auks on Spitsbergen. The temperature logger records indicated that during short trips, little auks visit warmer waters (situated close to the colony) than during long ones. The tracks of two GPS-equipped birds indicated that during long trips little auks foraged in the distant, food-abundant marginal sea ice zone, at least 100 km away from the colony. During long trips, birds make several stops at sea, perhaps sampling the foraging area with respect to prey distribution. Since food conditions near the studied colony are usually suboptimal, little auks may be exploiting distant feeding areas to compensate for the poorer-quality food available at nearby foraging grounds. The extended duration of long foraging trips may enable birds to collect food for chicks on food-abundant, remote foraging grounds as well as acquire, process and excrete food needed for self-maintenance, reducing the costs of flight to the colony.  相似文献   

19.
A significant component of foraging energetics is the cost of locomotion, which for marine animals, is the cost of swimming. Increases in the cost of swimming may have significant impacts on foraging efficiency. Minimizing the cost of swimming can contribute to the optimization of foraging strategies by reducing the energetic cost of foraging. Results of several field studies suggest that an increase in the cost of locomotion may have comparable effects on foraging behavior and efficiency to a decrease in prey availability. We tested the hypothesis that an increased cost of swimming, brought on by increased hydrodynamic drag, has the same effect on dive behavior and efficiency as reduced prey availability under standard locomotion. Experiments were performed using two adult female Steller sea lions at the Alaska SeaLife Center in Seward, AK, using the same animals and general experimental design previously used to test the effects of reduced prey encounter rate on dive behavior and efficiency. Animals were fitted with a drag-inducing harness for half of the 500 simulated foraging dives in order to increase the cost of swimming. Individual dive duration and foraging time were significantly reduced in all cost-increased dives, comparable to the effects of reduced prey encounter rate. However, on a bout-by-bout basis, dive and foraging efficiency were only slightly reduced, which is likely due to an average 50% reduction in post-dive surface recovery duration during cost-increased dives. Increased heat flux across the body surface measured in a parallel study confirmed a significant increase in work during drag-increased dives. These results suggest that sea lions are able to compensate for changes in the cost of foraging and maintain their foraging efficiency by altering their dive strategy over an entire bout of dives when operating well within their aerobic scope.  相似文献   

20.
Across an individual''s life, foraging decisions will be affected by multiple intrinsic and extrinsic drivers that act at differing timescales. This study aimed to assess how female Australian fur seals allocated foraging effort and the behavioural changes used to achieve this at three temporal scales: within a day, across a foraging trip and across the final six months of the lactation period. Foraging effort peaked during daylight hours (57% of time diving) with lulls in activity just prior to and after daylight. Dive duration reduced across the day (196 s to 168 s) but this was compensated for by an increase in the vertical travel rate (1500–1600 m·h−1) and a reduction in postdive duration (111–90 s). This suggests physiological constraints (digestive costs) or prey availability may be limiting mean dive durations as a day progresses. During short trips (<2.9 d), effort remained steady at 55% of time diving, whereas, on long trips (>2.9 d) effort increased up to 2–3 d and then decreased. Dive duration decreased at the same rate in short and long trips, respectively, before stabilising (long trips) between 4–5 d. Suggesting that the same processes (digestive costs or prey availability) working at the daily scale may also be present across a trip. Across the lactation period, foraging effort, dive duration and vertical travel rate increased until August, before beginning to decrease. This suggests that as the nutritional demands of the suckling pup and developing foetus increase, female effort increases to accommodate this, providing insight into the potential constraints of maternal investment in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号