首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hematopoietic potential of neural stem cells   总被引:1,自引:0,他引:1  
Shih CC  Mamelak A  LeBon T  Forman SJ 《Nature medicine》2002,8(6):535; author reply 536-535; author reply 537
  相似文献   

2.
《Cell Stem Cell》2023,30(4):460-472.e6
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   

3.
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous malignancies with distinct prognosis based on primary tumor localization, grade, stage and functionality. Surgery remains the only curative option in localized tumors, but systemic therapy is the mainstay of treatment for patients with advanced disease. For decades, the therapeutic landscape of GEP-NETs was limited to chemotherapy regimens with low response rates. The arrival of novel agents such as somatostatin analogues, peptide receptor radionuclide therapy, tyrosine kinase inhibitors or mTOR-targeted drugs, has changed the therapeutic paradigm of GEP-NETs. However, the efficacy of these agents is limited in time and there is scarce knowledge of optimal treatment sequencing. In recent years, massive parallel sequencing techniques have started to unravel the genomic intricacies of these tumors, allowing us to better understand the mechanisms of resistance to current treatments and to develop new targeted agents that will hopefully start an era for personalized treatment in NETs. In this review we aim to summarize the most relevant genomic aberrations and signaling pathways underlying GEP-NET tumorigenesis and potential therapeutic strategies derived from them.  相似文献   

4.
5.
Excessive accumulation of smooth-muscle cells (SMCs) has a key role in the pathogenesis of vascular diseases. It has been assumed that SMCs derived from the outer medial layer migrate, proliferate and synthesize extracellular matrix components on the luminal side of the vessel. Although much effort has been devoted to targeting migration and proliferation of medial SMCs, there is no effective therapy that prevents occlusive vascular remodeling. We show here that in models of post-angioplasty restenosis, graft vasculopathy and hyperlipidemia-induced atherosclerosis, bone-marrow cells give rise to most of the SMCs that contribute to arterial remodeling. Notably, purified hematopoietic stem cells differentiate into SMCs in vitro and in vivo. Our findings indicate that somatic stem cells contribute to pathological remodeling of remote organs, and may provide the basis for the development of new therapeutic strategies for vascular diseases through targeting mobilization, homing, differentiation and proliferation of bone marrow-derived vascular progenitor cells.  相似文献   

6.
7.
Permanent lines of pluripotent stem cells can be obtained from humans and monkeys using different techniques and from different sources—inner cell mass of the blastocyst, primary germ cells, parthenogenetic oocytes, and mature spermatogonia—as well as by transgenic modification of various adult somatic cells. Despite different origin, all pluripotent lines demonstrate considerable similarity of the major biological properties: active self-renewal and differentiation into various somatic and germ cells in vitro and in vivo, similar gene expression profiles, and similar cell cycle structure. Ten years of intense studies on the stability of different human and monkey embryonic stem cells demonstrated that, irrespective of their origin, long-term in vitro cultures lead to the accumulation of chromosomal and gene mutations as well as epigenetic changes that can cause oncogenic transformation of cells. This review summarizes the research data on the genetic and epigenetic stability of different lines of pluripotent stem cells after long-term in vitro culture. These data were used to analyze possible factors of the genome and epigenome instability in pluripotent lines. The prospects of using pluripotent stem cells of different origin in cell therapy and pharmacological studies were considered.  相似文献   

8.
Recent studies have proposed that bone marrow hematopoietic stem cells (HSCs) are maintained via N-cadherin-mediated homophilic adhesion with osteoblasts. However, there is not yet any evidence that N-cadherin-expressing cells have HSC activity or that osteoblasts are required for HSC maintenance. We were unable to detect N-cadherin expression in highly purified HSCs by polymerase chain reaction, by using commercial anti-N-cadherin antibodies, or by beta-galactosidase staining of N-cadherin gene trap mice. Only N-cadherin-negative bone marrow cells exhibited HSC activity in irradiated mice. Finally, biglycan-deficient mice had significant reductions in trabecular bone and osteoblasts but showed no defects in hematopoiesis, HSC frequency, or function. Thus, reductions in osteoblasts do not necessarily lead to reductions in HSCs. Most bone marrow HSCs in wild-type and biglycan-deficient mice localized to sinusoids, and few localized within five cell diameters of the endosteum. These results question whether significant numbers of HSCs depend on N-cadherin-mediated adhesion to osteoblasts.  相似文献   

9.
Lang MF  Yang S  Zhao C  Sun G  Murai K  Wu X  Wang J  Gao H  Brown CE  Liu X  Zhou J  Peng L  Rossi JJ  Shi Y 《PloS one》2012,7(4):e36248
A major challenge in cancer research field is to define molecular features that distinguish cancer stem cells from normal stem cells. In this study, we compared microRNA (miRNA) expression profiles in human glioblastoma stem cells and normal neural stem cells using combined microarray and deep sequencing analyses. These studies allowed us to identify a set of 10 miRNAs that are considerably up-regulated or down-regulated in glioblastoma stem cells. Among them, 5 miRNAs were further confirmed to have altered expression in three independent lines of glioblastoma stem cells by real-time RT-PCR analysis. Moreover, two of the miRNAs with increased expression in glioblastoma stem cells also exhibited elevated expression in glioblastoma patient tissues examined, while two miRNAs with decreased expression in glioblastoma stem cells displayed reduced expression in tumor tissues. Furthermore, we identified two oncogenes, NRAS and PIM3, as downstream targets of miR-124, one of the down-regulated miRNAs; and a tumor suppressor, CSMD1, as a downstream target of miR-10a and miR-10b, two of the up-regulated miRNAs. In summary, this study led to the identification of a set of miRNAs that are differentially expressed in glioblastoma stem cells and normal neural stem cells. Characterizing the role of these miRNAs in glioblastoma stem cells may lead to the development of miRNA-based therapies that specifically target tumor stem cells, but spare normal stem cells.  相似文献   

10.
11.
Embryonic stem (ES) cells and ES cell-derived differentiated cells can be used in tissue regeneration approaches. However, inflammation may pose a major hurdle. To define the inflammatory response of ES and ES cell-derived vascular cells, we exposed these cells to LPS. With the exception of MIF no significant cytokine mRNA levels were observed either at baseline or after stimulation. Further experiments revealed that these cells do not express TLR4. Analysis of the DNA methylation status of the TLR4 upstream region showed increased methylation. Moreover, in vitro methylation suppressed TLR4 promoter activity in reporter gene assays. ChIP assays showed that in this region histones H3 and H4 are hypoacetylated in ES cells. Interestingly, 5-aza-dC or TSA partially relieves this gene repression. Finally, the increased levels of TLR4 observed in ES cells after treatment with 5-aza-dC or TSA confer responsiveness to LPS, as induction of IL-6 and TNFalpha mRNA was detected in endotoxin stimulated ES cells.  相似文献   

12.
13.
Although it has been widely demonstrated that human mesenchymal stem cells exert potent immunosuppressive effects, there is little information as to whether more mature mesenchymal stromal cells (SC) share the same property. Accordingly, we set out to test the ability of SC from different human tissues to inhibit the proliferation of PBMC following polyclonal stimuli. Chondrocytes, as well as fibroblasts from synovial joints, lung, and skin, were used as a source of SC. Irrespective of their differentiation potential and/or content of progenitor cells, SC from all tissues exhibited antiproliferative functions. This was in marked contrast to parenchymal cells. Although SC did not interfere with early T lymphocyte activation, they arrested stimulated T cells in the G(0)/G(1) phase of the cell cycle and rescued them from apoptosis. In addition, IFN-gamma and TNF-alpha production were reduced. We observed that the inhibitory effect is ultimately mediated by soluble factors, the production of which requires SC to be licensed in an inflammatory environment by cell contact. We conclude that the immunosuppressive effect of mesenchymal cells is not confined to multipotent stem cells, but is a fundamental characteristic of all stroma. Our data suggest that SC, appropriately licensed, regulate T cell homeostasis.  相似文献   

14.
胚胎干细胞分化过程中的表观遗传调控   总被引:1,自引:0,他引:1  
作为一类既有自我更新能力,并具有多向分化潜能的细胞,胚胎干细胞具有非常重要的理论研究意义和临床应用前景。近期以胚胎干细胞为模型,研究有关干细胞分化的表观遗传调控已成为新的研究热点。本文就胚胎干细胞分化过程中DNA甲基化、组蛋白修饰、非编码RNA调控以及与胚胎干细胞分化密切相关的表观遗传学动态变化做一概述,对表观遗传学改变与胚胎干细胞分化关系的基础研究进行探讨。  相似文献   

15.
The search for putative precursor cells within the pancreas has been the focus of extensive research. Previously, we identified rare pancreas-derived multipotent precursor (PMP) cells in the mouse with the intriguing capacity to generate progeny in the pancreatic and neural lineages. Here, we establish the embryonic pancreas as the developmental source of PMPs through lineage-labeling experiments. We also show that PMPs express insulin and can contribute to multiple pancreatic and neural cell types in vivo. In addition, we have isolated PMPs from adult human islet tissue that are also capable of extensive proliferation, self-renewal, and generation of multiple differentiated pancreatic and neural cell types. Finally, both mouse and human PMP-derived cells ameliorated diabetes in transplanted mice. These findings demonstrate that the adult mammalian pancreas contains a population of insulin(+) multipotent stem cells and suggest that these cells may provide a promising line of investigation toward potential therapeutic benefit.  相似文献   

16.
Su H  Zhao J  Xiong Y  Xu T  Zhou F  Yuan Y  Zhang Y  Zhuang SM 《Mutation research》2008,641(1-2):27-35
Our knowledge about molecular alterations during hepatocarcinogenesis is still fragmentary, due to lack of comprehensive genetic and epigenetic analyses in the same set of hepatocellular carcinomas (HCCs). In this study, we conducted a large-scale analysis, including mutation screening in 50 genes and methylation assays in three genes in 54 pairs of HCCs and their neighboring non-cancerous tissues. All samples were collected from the residents in Southeast China. We found HBV infection and chronic hepatitis/cirrhosis in 83.3% and 98.1% of the cases, respectively. Mutations were identified in 18 out of 54 (33.3%) samples, with p53 alterations in 14 cases and β-catenin mutations in four tumors. No mutations were identified in the neighboring tissues. Interestingly, 9 out of 14 (64.3%) tumors carrying p53 mutations displayed substitution of serine by arginine at codon 249, a characteristic change believed to be induced by aflatoxin-B1. Furthermore, p53 mutation was significantly associated with shorter recurrence-free survival (P = 0.004). The results also revealed aberrant methylation in two or more genes in as high as 90% of tumors and 40% of adjacent tissues. The frequency of RASSF1A hypermethylation was much higher than that of p16INK4a and HAI2 in both HCC and neighboring tissues, indicating that deregulation of RASSF1A may precede the other two genes. These data suggest that aberrant methylation occurs before mutation and is an early event in the development of this set of HCC. Our findings highlight p53 as a prognostic factor of HCC and RASSF1A as a potential target in preventing malignant transformation of hepatocytes.  相似文献   

17.
Culture of embryonic stem (ES) cells at high density inhibits both beta-catenin signaling and neural differentiation. ES cell density does not influence beta-catenin expression, but a greater proportion of beta-catenin is targeted for degradation in high-density cultures. Moreover, in high-density cultures, beta-catenin is preferentially localized to the membrane further reducing beta-catenin signaling. Increasing beta-catenin signaling by treatment with Wnt3a-conditioned medium, by overexpression of beta-catenin, or by overexpression of a dominant-negative form of E-cadherin promotes neurogenesis. Furthermore, beta-catenin signaling is sufficient to induce neurogenesis in high-density cultures even in the absence of retinoic acid (RA), although RA potentiates the effects of beta-catenin. By contrast, RA does not induce neurogenesis in high-density cultures in the absence of beta-catenin signaling. Truncation of the armadillo domain of beta-catenin, but not the C terminus or the N terminus, eliminates its proneural effects. The proneural effects of beta-catenin reflect enhanced lineage commitment rather than proliferation of neural progenitor cells. Neurons induced by beta-catenin overexpression either alone or in association with RA express the caudal neuronal marker Hoxc4. However, RA treatment inhibits the beta-catenin-mediated generation of tyrosine hydroxylase-positive neurons, suggesting that not all of the effects of RA are dependent upon beta-catenin signaling. These observations suggest that beta-catenin signaling promotes neural lineage commitment by ES cells, and that beta-catenin signaling may be a necessary co-factor for RA-mediated neuronal differentiation. Further, enhancement of beta-catenin signaling with RA treatment significantly increases the numbers of neurons generated from ES cells, thus suggesting a method for obtaining large numbers of neural species for possible use in for ES cell transplantation.  相似文献   

18.
Tyrosine hydroxylase (TH) is the first and rate-limiting enzyme in the biosynthesis of catecholamines, and its expression is regulated in a developmental stage- and cell type-specific manner. Our previous work suggested that the genetic elements responsible for cell type-specific expression of TH were in the repressor region of the TH promoter between −2187 and −1232 bp. To investigate the molecular mechanisms underlying the specificity of TH expression, the DNA methylation patterns of the CpG islands in the repressor region of the TH promoter were examined in human neural stem cells (NSCs) and dopaminergic neuron-like cells. Using a bisulfite sequencing method, we found that the cytosine residues of CpG islands within the NRSE-R site were specifically methylated in NSCs, but not in SH-SY5Y neuroblastoma cells. In NSCs, CpG methylation correlated with reduced TH gene expression, and inhibition of DNA methylation with 5-azacytidine restored TH expression. Furthermore, methyl-CpG binding domain proteins (MBDs) bound to the highly methylated X-1 and X-2 regions of the TH gene in NSCs. Taken together, these results suggest that region-specific methylation and MBDs play important roles in TH gene regulation in NSCs.  相似文献   

19.
Understanding how autocrine/paracrine factors regulate neural stem cell (NSC) survival and growth is fundamental to the utilization of these cells for therapeutic applications and as cellular models for the brain. In vitro, NSCs can be propagated along with neural progenitors (NPs) as neurospheres (nsphs). The nsph conditioned medium (nsph-CM) contains cell-secreted factors that can regulate NSC behavior. However, the identity and exact function of these factors within the nsph-CM has remained elusive. We analyzed the nsph-CM by mass spectrometry and identified DSD-1-proteoglycan, a chondroitin sulfate proteoglycan (CSPG), apolipoprotein E (ApoE) and cystatin C as components of the nsph-CM. Using clonal assays we show that CSPG and ApoE are responsible for the ability of the nsph-CM to stimulate nsph formation whereas cystatin C is not involved. Clonal nsphs generated in the presence of CSPG show more than four-fold increase in NSCs. Thus CSPG specifically enhances the survival of NSCs. CSPG also stimulates the survival of embryonic stem cell (ESC)-derived NSCs, and thus may be involved in the developmental transition of ESCs to NSCs. In addition to its role in NSC survival, CSPG maintains the three dimensional structure of nsphs. Lastly, CSPG's effects on NSC survival may be mediated by enhanced signaling via EGFR, JAK/STAT3 and PI3K/Akt pathways.  相似文献   

20.
Cell culture of human-derived neural stem cells (NSCs) is a useful tool that contributes to our understanding of human brain development and allows for the development of therapies for intractable human brain disorders. Human NSC (hNSC) cultures, however, are not commonly used, mainly because of difficulty with consistently maintaining the cells in a healthy state. In this study, we show that hNSC cultures, unlike NSCs of rodent origins, are extremely sensitive to insulin, an indispensable culture supplement, and that the previously reported difficulty in culturing hNSCs is likely because of a lack of understanding of this relationship. Like other neural cell cultures, insulin is required for hNSC growth, as withdrawal of insulin supplementation results in massive cell death and delayed cell growth. However, severe apoptotic cell death was also detected in insulin concentrations optimized to rodent NSC cultures. Thus, healthy hNSC cultures were only produced in a narrow range of relatively low insulin concentrations. Insulin-mediated cell death manifested not only in all human NSCs tested, regardless of origin, but also in differentiated human neurons. The underlying cell death mechanism at high insulin concentrations was similar to insulin resistance, where cells became less responsive to insulin, resulting in a reduction in the activation of the PI3K/Akt pathway critical to cell survival signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号