首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neural stem cell (NSC) transplantation replaces damaged brain cells and provides disease-modifying effects in many neurological disorders. However, there has been no efficient way to obtain autologous NSCs in patients. Given that ectopic factors can reprogram somatic cells to be pluripotent, we attempted to generate human NSC-like cells by reprograming human fibroblasts. Fibroblasts were transfected with NSC line-derived cellular extracts and grown in neurosphere culture conditions. The cells were then analyzed for NSC characteristics, including neurosphere formation, gene expression patterns, and ability to differentiate. The obtained induced neurosphere-like cells (iNS), which formed daughter neurospheres after serial passaging, expressed neural stem cell markers, and had demethylated SOX2 regulatory regions, all characteristics of human NSCs. The iNS had gene expression patterns that were a combination of the patterns of NSCs and fibroblasts, but they could be differentiated to express neuroglial markers and neuronal sodium channels. These results show for the first time that iNS can be directly generated from human fibroblasts. Further studies on their application in neurological diseases are warranted.  相似文献   

2.
There is increasing evidence that the stem and progenitor cell population that builds the central nervous system is very heterogeneous. Stem cell markers with the potential to divide this cell pool into subpopulations with distinct characteristics are sparse. We were looking for new cell type-specific antigens to further subdivide the progenitor pool. Here, we introduce the novel monoclonal antibody clone 5750. We show that it specifically labels cell surfaces of neural stem and progenitor cells. When 5750-expressing cells were isolated by fluorescence-activated cell sorting from embryonic mouse brains, the sorted population showed increased neurosphere forming capacity and multipotency. Neurospheres generated from 5750-positive cells could self-renew and remained multipotent even after prolonged passaging. Carbohydrate binding assays revealed that the 5750 antibody specifically binds to LewisX-related carbohydrates. Interestingly, we found that the LewisX epitope recognized by clone 5750 differs from those detected by other anti-LewisX antibody clones like 487(LeX), SSEA-1(LeX), and MMA(LeX). Our data further reveal that individual anti-LewisX clones can be successfully used to label and deplete different subpopulations of neural cells in vivo and in vitro. In conclusion, we present a new tool for the isolation and characterization of neural subpopulations and provide insights into the complexity of cell surface glycosylation.  相似文献   

3.
Eicosanoids have been implicated in the physiological regulation of hematopoiesis with pleiotropic effects on hematopoietic stem cells and various classes of lineage restricted progenitor cells. Herein we review the effects of eicosanoids on hematopoiesis, focusing on new findings implicating prostaglandin E(2) in enhancing hematopoietic stem cell engraftment by enhancing stem cell homing, survival and self-renewal. We also describe a role for cannabinoids in hematopoiesis. Lastly, we discuss the yin and yang of various eicosanoids in modulating hematopoietic stem and progenitor cell functions and summarize potential strategies to take advantage of these effects for therapeutic benefit for hematopoietic stem cell transplantation.  相似文献   

4.
Bone marrow is the main site for hematopoiesis in adults. It acts as a niche for hematopoietic stem cells (HSCs) and contains non‐hematopoietic cells that contribute to stem cell dormancy, quiescence, self‐renewal, and differentiation. HSC also exist in resting spleen of several species, although their contribution to hematopoiesis under steady‐state conditions is unknown. The spleen can however undergo extramedullary hematopoiesis (EMH) triggered by physiological stress or disease. With the loss of bone marrow niches in aging and disease, the spleen as an alternative tissue site for hematopoiesis is an important consideration for future therapy, particularly during HSC transplantation. In terms of harnessing the spleen as a site for hematopoiesis, here the remarkable regenerative capacity of the spleen is considered with a view to forming additional or ectopic spleen tissue through cell engraftment. Studies in mice indicate the potential for such grafts to support the influx of hematopoietic cells leading to the development of normal spleen architecture. An important goal will be the formation of functional ectopic spleen tissue as an aid to hematopoietic recovery following clinical treatments that impact bone marrow. For example, expansion or replacement of niches could be considered where myeloablation ahead of HSC transplantation compromises treatment outcomes.  相似文献   

5.
Homozygosity for a null mutation in the scl gene causes mid-gestational embryonic lethality in the mouse due to failure of development of primitive hematopoiesis. Whilst this observation established the role of the scl gene product in primitive hematopoiesis, the death of the scl null embryos precluded analysis of the role of scl in later hematopoietic development. To address this question, we created embryonic stem cell lines with a homozygous null mutation of the scl gene (scl-/-) and used these lines to derive chimeric mice. Analysis of the chimeric mice demonstrates that the scl-/- embryonic stem cells make a substantial contribution to all non-hematopoietic tissues but do not contribute to any hematopoietic lineage. These observations reveal a crucial role for the scl gene product in definitive hematopoiesis. In addition, in vitro differentiation assays with scl-/- embryonic stem cells showed that the scl gene product was also required for formation of hematopoietic cells in this system.  相似文献   

6.
The Mixed-Lineage Leukemia (MLL) gene encodes a Trithorax-related chromatin-modifying protooncogene that positively regulates Hox genes. In addition to their well-characterized roles in axial patterning, Trithorax and Polycomb family proteins perform less-understood functions in vertebrate hematopoiesis. To define the role of MLL in the development of the hematopoietic system, we examined the potential of cells lacking MLL. Mll-deficient cells could not develop into lymphocytes in adult RAG-2 chimeric animals. Similarly, in vitro differentiation of B cells required MLL. In chimeric embryos, Mll-deficient cells failed to contribute to fetal liver hematopoietic stem cell/progenitor populations. Moreover, we show that aorta-gonad-mesonephros (AGM) cells from Mll-deficient embryos lacked hematopoietic stem cell (HSC) activity despite their ability to generate hematopoietic progeny in vitro. These results demonstrate an intrinsic requirement for MLL in definitive hematopoiesis, where it is essential for the generation of HSCs in the embryo.  相似文献   

7.
Neural stem cells (NSCs) are undifferentiated, primitive cells with important potential applications including the replacement of neural tissue lost due to neurodegenerative diseases, including Parkinson's disease, as well as brain and spinal cord injuries, including stroke. We have developed methods to rapidly expand populations of mammalian stem and progenitor cells in neurosphere cultures. In the present study, flow cytometry was used in order to understand cell cycle activation and proliferation of neural stem and progenitor cells in suspension bioreactors. First, a protocol was developed to analyze the cell cycle kinetics of NSCs. As expected, neurosphere cells were found to cycle slowly, with a very small proportion of the cell population undergoing mitosis at any time. Large fractions (65-70%) of the cells were detected in G1, even in rapidly proliferating cultures, and significant fractions (20%) of the cells were in G0. Second, it was observed that different culturing methods influence both the proportion of neurosphere cells in each phase of the cell cycle and the fraction of actively proliferating cells. The results show that suspension culture does not significantly alter the cell cycle progression of neurosphere cells, while long-term culture (>60 days) results in significant changes in cell cycle kinetics. This suggests that when developing a process to produce neural stem cells for clinical applications, it is imperative to track the cell cycle kinetics, and that a short-term suspension bioreactor process can be used to successfully expand neurosphere cells.  相似文献   

8.
Representing a renewable source for cell replacement, neural stem cells have received substantial attention in recent years. The neurosphere assay represents a method to detect the presence of neural stem cells, however owing to a deficiency of specific and definitive markers to identify them, their quantification and the rate they expand is still indefinite. Here we propose a mathematical interpretation of the neurosphere assay allowing actual measurement of neural stem cell symmetric division frequency. The algorithm of the modeling demonstrates a direct correlation between the overall cell fold expansion over time measured in the sphere assay and the rate stem cells expand via symmetric division. The model offers a methodology to evaluate specifically the effect of diseases and treatments on neural stem cell activity and function. Not only providing new insights in the evaluation of the kinetic features of neural stem cells, our modeling further contemplates cancer biology as cancer stem-like cells have been suggested to maintain tumor growth as somatic stem cells maintain tissue homeostasis. Indeed, tumor stem cell's resistance to therapy makes these cells a necessary target for effective treatment. The neurosphere assay mathematical model presented here allows the assessment of the rate malignant stem-like cells expand via symmetric division and the evaluation of the effects of therapeutics on the self-renewal and proliferative activity of this clinically relevant population that drive tumor growth and recurrence.  相似文献   

9.
The isolation and expansion of precursor cells in a serum-free culture system allows for the systematic characterization of their properties and the intrinsic and extrinsic signals that regulate their function. The discovery of neural stem cells in the adult mouse brain was made possible by the creation of a novel culture system subsequently termed the neurosphere assay. Therein, the dissociated adult mouse periventricular area was plated in the presence of epidermal growth factor, but in the absence of adhesive substrates, which resulted in the generation of spheres of proliferating cells that detached from the plate bottom and remained suspended in the media. Since its inception, the neurosphere culture system has been widely used in the neural precursor cell field and has been extensively adapted for the isolation and expansion of corneal, cardiac, skin, prostate, mammary and brain tumor stem cells. The original neurosphere culture protocol, which takes approximately 10 d to complete, is described here in detail.  相似文献   

10.
FLT3/FLK2, a member of the receptor tyrosine kinase family, plays a critical role in maintenance of hematopoietic homeostasis, and the constitutively active form of the FLT3 mutation is one of the most common genetic abnormalities in acute myelogenous leukemia. In murine hematopoiesis, Flt3 is not expressed in self-renewing hematopoietic stem cells, but its expression is restricted to the multipotent and the lymphoid progenitor stages at which cells are incapable of self-renewal. We extensively analyzed the expression of Flt3 in human (h) hematopoiesis. Strikingly, in both the bone marrow and the cord blood, the human hematopoietic stem cell population capable of long-term reconstitution in xenogeneic hosts uniformly expressed Flt3. Furthermore, human Flt3 is expressed not only in early lymphoid progenitors, but also in progenitors continuously along the granulocyte/macrophage pathway, including the common myeloid progenitor and the granulocyte/macrophage progenitor. We further found that human Flt3 signaling prevents stem and progenitors from spontaneous apoptotic cell death at least through up-regulating Mcl-1, an indispensable survival factor for hematopoiesis. Thus, the distribution of Flt3 expression is considerably different in human and mouse hematopoiesis, and human FLT3 signaling might play an important role in cell survival, especially at stem and progenitor cells that are critical cellular targets for acute myelogenous leukemia transformation.  相似文献   

11.
The successful ex vivo reconstruction of human bone marrow is an extraordinarily important basic scientific and clinical goal. Fundamentally, the system is the paradigm of a complex interactive tissue, in which the proliferation and regulated differentiation of one parenchymal cell type (the hematopoietic stem cell) is governed by the surrounding stromal cells. Understanding and reproducing the molecular interactions between bone marrow stromal cells and stem cells in tissue culture models is therefore the critical step in successful bone marrow tissue culture. Clinically, successful reconstruction of human bone marrow would permit the controlled production of mature blood cells for transfusion therapy, and immature bone marrow stem cells for bone marrow transplantation. In approaching the bone marrow culture system, we recognize the critical role that hematopoietic growth factors (HGFs) play in hematopoiesis. Since stromal cells in traditional human bone marrow cultures produce little HGFs, we have begun by asking whether local supplementation of hematopoietic growth factors via genetically engineered stromal cells might augment hematopoiesis in liquid cultures. The results indicate that locally produced GM-CSF and IL-3 do augment hematopoiesis for several weeks in culture. In combination with geometric and dynamic approaches to reconstructing physiological bone marrow microenvironments, we believe that this approach has promise for reconstructing human bone marrow ex vivo, thereby permitting its application to a variety of basic and clinical problems.  相似文献   

12.
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as “chopping” that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.  相似文献   

13.
Hematopoietic stem cell (HSC) division leads to self-renewal, differentiation, or death of HSCs, and adequate balance of this process results in sustained, lifelong, high-throughput hematopoiesis. Despite their contribution to hematopoietic cell production, the majority of cells within the HSC population are quiescent at any given time. Recent studies have tackled the questions of how often HSCs divide, how divisional history relates to repopulating potential, and how many HSCs contribute to hematopoiesis. Here, we summarize these recent findings on HSC turnover from different experimental systems and discuss hypothetical models for HSC cycling and maintenance in steady-state and upon hematopoietic challenge.  相似文献   

14.
Recent studies suggest that endothelial cells are a critical component of the normal hematopoietic microenvironment. Therefore, we sought to determine whether primary endothelial cells have the capacity to repair damaged hematopoietic stem cells. Highly purified populations of primary CD31+ microvascular endothelial cells isolated from the brain or lung did not express the pan hematopoietic marker CD45, most hematopoietic lineage markers, or the progenitor marker c-kit and did not give rise to hematopoietic cells in vitro or in vivo. Remarkably, the transplantation of small numbers of these microvascular endothelial cells consistently restored hematopoiesis following bone marrow lethal doses of irradiation. Analysis of the peripheral blood of rescued recipients demonstrated that both short-term and long-term multilineage hematopoietic reconstitution was exclusively of host origin. Secondary transplantation studies revealed that microvascular endothelial cell-mediated hematopoietic regeneration also occurs at the level of the hematopoietic stem cell. These findings suggest a potential therapeutic role for microvascular endothelial cells in the self-renewal and repair of adult hematopoietic stem cells.  相似文献   

15.
The biological role of genomic imprinting in adult tissue is central to the consideration of transplanting uniparental embryonic stem (ES) cell-derived tissues. We have recently shown that both maternal (parthenogenetic/gynogenetic) and paternal (androgenetic) uniparental ES cells can differentiate, both in vivo in chimeras and in vitro, into adult-repopulating hematopoietic stem and progenitor cells. This suggests that, at least in some tissues, the presence of two maternal or two paternal genomes does not interfere with stem cell function and tissue homeostasis in the adult. Here, we consider implications of the contribution of uniparental cells to hematopoiesis and to development of other organ systems, notably neural tissue for which consequences of genomic imprinting are associated with a known bias in development and behavioral disorders. Our findings so far indicate that there is little or no limit to the differentiation potential of uniparental ES cells outside the normal developmental paradigm. As a potentially donor MHC-matching source of tissue, uniparental transplants may provide not only a clinical resource but also a unique tool to investigate aspects of genomic imprinting in adults.Key words: uniparental, androgenetic, chimera, transplantation, parthenogenetic, gynogenetic, hematopoietic, neural  相似文献   

16.
17.
Hematopoiesis     
Enormous numbers of adult blood cells are constantly regenerated throughout life from hematopoietic stem cells through a series of progenitor stages. Accessibility, robust functional assays, well-established prospective isolation, and successful clinical application made hematopoiesis the classical mammalian stem cell system. Most of the basic concepts of stem cell biology have been defined in this system. At the same time, many long-standing disputes in hematopoiesis research illustrate our still limited understanding. Here we discuss the embryonic development and lifelong maintenance of the hematopoietic system, its cellular components, and some of the hypotheses about the molecular mechanisms involved in controlling hematopoietic cell fates.  相似文献   

18.
19.
Multipotent, self-renewing neural stem cells reside in the embryonic mouse telencephalic germinal zone. Using an in vitro neurosphere assay for neural stem cell proliferation, we demonstrate that FGF-responsive neural stem cells are present as early as E8.5 in the anterior neural plate, but EGF-responsive neural stem cells emerge later in development in a temporally and spatially specific manner. By separately blocking EGF and FGF2 signaling, we also show that EGF alone and FGF2 alone can independently elicit neural stem cell proliferation and at relatively high cell densities separate cell nonautonomous effects can substantially enhance the mitogen-induced proliferation. At lower cell densities, neural stem cell proliferation is additive in the presence of EGF and FGF2 combined, revealing two different stem cell populations. However, both FGF-responsive and EGF-responsive neural stem cells retain their self-renewal and multilineage potential, regardless of growth factor conditions. These results support a model in which separate, lineage-related EGF- and FGF-responsive neural stem cells are present in the embryonic telencephalic germinal zone.  相似文献   

20.
Amphibians represent the first phylogenetic group to possess hematopoietic bone marrow. However, adult amphibian hematopoiesis has only been described in a few species and with conflicting data. Bone marrow, kidney, spleen, liver, gut, stomach, lung, tegument, and heart were therefore collected from adult Lithobates catesbeianus and investigated by light microscopy and immunohistochemical methods under confocal laser microscopy. Our study demonstrated active hematopoiesis in the bone marrow of vertebrae, femur, and fingers and in the kidney, but no hematopoietic activity inside other organs including the spleen and liver. Blood cells were identified as a heterogeneous cell population constituted by heterophils, basophils, eosinophils, monocytes, erythrocytic cells, lymphocytes, and their precursors. Cellular islets of the thrombocytic lineage occurred near sinusoids of the bone marrow. Antibodies against CD34, CD117, stem cell antigen, erythropoietin receptor, and the receptor for granulocyte colony-stimulating factor identified some cell populations, and some circulating immature cells were seen in the bloodstream. Thus, on the basis of these phylogenetic features, we propose that L. catesbeianus can be used as an important model for hematopoietic studies, since this anuran exhibits hematopoiesis characteristics both of lower vertebrates (renal hematopoiesis) and of higher vertebrates (bone marrow hematopoiesis).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号