首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Cellulosic material Avicel was treated with supercritical carbon dioxide to increase the reactivity of cellulose, thereby to enhance the rate and the extent of cellulose hydrolysis. Upon an explosive release of the carbon dioxide pressure, the disruption of the cellulosic structure increases the accessible surface area of the cellulosic substrate to enzymatic hydrolysis. This explosion pretreatment enhances the rate of the Avicel hydrolysis as well as increases glucose yield by as much as 50%.  相似文献   

2.
Microcrystalline cellulose (Avicel) was subjected to three different pretreatments (acid, alkaline, and organosolv) before exposure to a mixture of cellulases (Celluclast). Addition of beta-glucosidase, to avoid the well-known inhibition of cellulase by cellobiose, markedly accelerated cellulose hydrolysis up to a ratio of activity units (beta-glucosidase/cellulase) of 20. All pretreatment protocols of Avicel were found to slightly increase its degree of crystallinity in comparison with the untreated control. Adsorption of both cellulase and beta-glucosidase on cellulose is significant and also strongly depends on the wall material of the reactor. The conversion-time behavior of all four states of Avicel was found to be very similar. Jamming of adjacent cellulase enzymes when adsorbed on microcrystalline cellulose surface is evident at higher concentrations of enzyme, beyond 400 U/L cellulase/8 kU/L beta-glucosidase. Jamming explains the observed and well-known dramatically slowing rate of cellulose hydrolysis at high degrees of conversion. In contrast to the enzyme concentration, neither the method of pretreatment nor the presence or absence of presumed fractal kinetics has an effect on the calculated jamming parameter for cellulose hydrolysis.  相似文献   

3.
The cellulase activity in cell-free broths from the thermophilic, ethanol-producing anaerobic bacterium Clostridium thermocellum is examined on both dilute-acid-pretreated mixed hardwood (90% maple, 10% birch) and Avicel. Experiments were conducted in vitro in order to distinguish properties of the cellulase from properties of the organism and to evaluate the effectiveness of C. thermocellum cellulase in the hydrolysis of a naturally occurring, lignin-containing substrate. The results obtained establish that essentially quantitative hydrolysis of cellulose from pretreated mixed hardwood is possible using this enzyme system. Pretreatment with 1% H(2)SO(4) and a 9-s residence time at 220, 210, 200, and 180 degrees C allowed yields after enzymatic hydrolysis (percentage of glucan solubilized/ glucan potentially solubilized) of 97.8, 86.1, 82.0, and 34.6%, respectively. Enzymatic hydrolysis of mixed hardwood with no pretreatment resulted in a yield of 10.1%. Hydrolysis yields of >95% were obtained from approximately 0.6 g/L mixed hardwood pretreated at 220 degrees C in 7 h at broth strengths of 60 and 80% (v/v) and in approximately 48 h with 33% broth. Hydrolysis of pretreated mixed hardwood is compared to hydrolysis of Avicel, a pure microcrystalline cellulose studied previously. The initial rate of Avicel hydrolysis saturates with respect to enzyme, whereas the initial rate of hydrolysis of pretreated wood is proportional to the amount of enzyme present. Initial hydrolysis rates for pretreated wood and Avicel at 0.6 g/L are greater for wood at low broth dilutions (1.25: 1 to 5 :1) by up to 2.7-fold and greater for Avicel at high broth dilutions (5 : 1 to 50 : 1) by up to 4.3-fold. Maximum rates of hydrolysis are achieved at <2 g substrate/L for both pretreated wood and Avicel. The substrate concentration at one-half the maximum observed rate for C. thermocellum broths is smaller for pretreated mixed hardwood than for Avicel and decreases with increasing broth dilution for both substrates. An initial activity per volume broth of approximately 11 mumol soluble glucose equivalent produced/L broth/min is observed for mixed hardwood pretreated at 220 degrees C and for Avicel at high broth dilutions; the initial activity per volume broth for Avicel is lower at low broth dilutions. The results indicate that pretreated wood is hydrolyzed at rates comparable to Avicel under many conditions and at rates significantly faster than Avicel under several conditions.  相似文献   

4.
Cellulose is inherently resistant to breakdown, and the native crystalline structure (cellulose I) of cellulose is considered to be one of the major factors limiting its potential in terms of cost-competitive lignocellulosic biofuel production. Here we report the impact of ionic liquid pretreatment on the cellulose crystalline structure in different feedstocks, including microcrystalline cellulose (Avicel), switchgrass (Panicum virgatum), pine ( Pinus radiata ), and eucalyptus ( Eucalyptus globulus ), and its influence on cellulose hydrolysis kinetics of the resultant biomass. These feedstocks were pretreated using 1-ethyl-3-methyl imidazolium acetate ([C2mim][OAc]) at 120 and 160 °C for 1, 3, 6, and 12 h. The influence of the pretreatment conditions on the cellulose crystalline structure was analyzed by X-ray diffraction (XRD). On a larger length scale, the impact of ionic liquid pretreatment on the surface roughness of the biomass was determined by small-angle neutron scattering (SANS). Pretreatment resulted in a loss of native cellulose crystalline structure. However, the transformation processes were distinctly different for Avicel and for the biomass samples. For Avicel, a transformation to cellulose II occurred for all processing conditions. For the biomass samples, the data suggest that pretreatment for most conditions resulted in an expanded cellulose I lattice. For switchgrass, first evidence of cellulose II only occurred after 12 h of pretreatment at 120 °C. For eucalyptus, first evidence of cellulose II required more intense pretreatment (3 h at 160 °C). For pine, no clear evidence of cellulose II content was detected for the most intense pretreatment conditions of this study (12 h at 160 °C). Interestingly, the rate of enzymatic hydrolysis of Avicel was slightly lower for pretreatment at 160 °C compared with pretreatment at 120 °C. For the biomass samples, the hydrolysis rate was much greater for pretreatment at 160 °C compared with pretreatment at 120 °C. The result for Avicel can be explained by more complete conversion to cellulose II upon precipitation after pretreatment at 160 °C. By comparison, the result for the biomass samples suggests that another factor, likely lignin-carbohydrate complexes, also impacts the rate of cellulose hydrolysis in addition to cellulose crystallinity.  相似文献   

5.
A cellulosome-microbe complex was assembled ex vivo on the surface of Bacillus subtilis displaying a miniscaffoldin that can bind with three dockerin-containing cellulase components: the endoglucanase Cel5, the processive endoglucanase Cel9, and the cellobiohydrolase Cel48. The hydrolysis performances of the synthetic cellulosome bound to living cells, the synthetic cellulosome, a noncomplexed cellulase mixture with the same catalytic components, and a commercial fungal enzyme mixture were investigated on low-accessibility recalcitrant Avicel and high-accessibility regenerated amorphous cellulose (RAC). The cell-bound cellulosome exhibited 4.5- and 2.3-fold-higher hydrolysis ability than cell-free cellulosome on Avicel and RAC, respectively. The cellulosome-microbe synergy was not completely explained by the removal of hydrolysis products from the bulk fermentation broth by free-living cells and appeared to be due to substrate channeling of long-chain hydrolysis products assimilated by the adjacent cells located in the boundary layer. Our results implied that long-chain hydrolysis products in the boundary layer may inhibit cellulosome activity to a greater extent than the short-chain products in bulk phase. The findings that cell-bound cellulosome expedited the microbial cellulose utilization rate by 2.3- to 4.5-fold would help in the development of better consolidated bioprocessing microorganisms (e.g., B. subtilis) that can hydrolyze recalcitrant cellulose rapidly at low secretory cellulase levels.  相似文献   

6.
Two endoglucanases with processive cellulase activities, produced from Fomitopsis palustris grown on 2% microcrystalline cellulose (Avicel), were purified to homogeneity by anion-exchange and gel filtration column chromatography systems. SDS-PAGE analysis indicated that the molecular masses of the purified enzymes were 47 kDa and 35 kDa, respectively. The amino acid sequence analysis of the 47-kDa protein (EG47) showed a sequence similarity with fungal glycoside hydrolase family 5 endoglucanase from the white-rot fungus Phanerochaete chrysosporium. N-terminal and internal amino acid sequences of the 35-kDa protein (EG35), however, had no homology with any other glycosylhydrolases, although the enzyme had high specific activity against carboxymethyl cellulose, which is a typical substrate for endoglucanases. The initial rate of Avicel hydrolysis by EG35 was relatively fast for 48 h, and the amount of soluble reducing sugar released after 96 h was 100 microg/ml. Although EG47 also hydrolyzed Avicel, the hydrolysis rate was lower than that of EG35. Thin layer chromatography analysis of the hydrolysis products released from Avicel indicated that the main product was cellobiose, suggesting that the brown-rot fungus possesses processive EGs capable of degrading crystalline cellulose.  相似文献   

7.
Zhang YH  Lynd LR 《Biomacromolecules》2005,6(3):1510-1515
A rapid and accurate method for determining the number-average degree of polymerization (DP(n)) was established for insoluble cellulose and soluble cellodextrins as the ratio of glucosyl monomer concentration determined by the phenol-sulfuric acid method divided by the reducing-end concentration determined by a modified 2,2'-bicinchoninate (BCA) method. The modified BCA method, featuring incubation at 75 degrees C for 30 min, did not result in beta-glucosidic bond cleavage, whereas substantial cleavage was observed at higher temperature. Solubilization of insoluble cellulose in cold phosphoric acid prior to measurement of the reducing-end concentration by the BCA method was found not to be necessary for several model celluloses such as microcrystalline cellulose, but such solubilization was required for large fibers of cellulose such as Whatman No. 1 filter paper. The phenol-sulfuric acid method can be used for measuring the glucosyl monomer concentration of soluble cellodextrins, and also for insoluble cellulose if preceded by a liquefaction step. Standard deviations of < or =2% were obtained for both reducing and glucosyl monomer determination and of < or =3% for overall determination of DP. By use of the reported method, hydrolysis of phosphoric acid-swollen cellulose (PASC) by the Trichoderma reesei cellulase system was shown to result in a rapid decrease in DP as hydrolysis proceeded. By contrast, the DP of Avicel remained nearly constant during hydrolysis. The specific enzymatic cellulose hydrolysis rate is 100-fold higher for PASC as compared to Avicel.  相似文献   

8.
Jeon SD  Yu KO  Kim SW  Han SO 《New biotechnology》2012,29(3):365-371
Clostridium cellulovorans produces an efficient enzyme complex for the degradation of lignocellulosic biomass. In our previous study, we detected and identified protein spots that interacted with a fluorescently labeled cohesin biomarker via two-dimensional gel electrophoresis. One novel, putative cellulosomal protein (referred to as endoglucanase Z) contains a catalytic module from the glycosyl hydrolase family (GH9) and demonstrated higher levels of expression than other cellulosomal cellulases in Avicel-containing cultures. Purified EngZ had optimal activity at pH 7.0, 40°C, and the major hydrolysis product from the cellooligosaccharides was cellobiose. EngZ's specific activity toward crystalline cellulose (Avicel and acid-swollen cellulose) was 10-20-fold higher than other cellulosomal cellulase activities. A large percentage of the reducing ends that were produced by this enzyme from acid-swollen cellulose were released as soluble sugar. EngZ has the capability of reducing the viscosity of Avicel at an intermediate-level between exo- and endo-typing cellulases, suggesting that it is a processive endoglucanase. In conclusion, EngZ was highly expressed in cellulolytic systems and demonstrated processive endoglucanase activity, suggesting that it plays a major role in the hydrolysis of crystalline cellulose and acts as a cellulosomal enzyme in C. cellulovorans.  相似文献   

9.
The slow down in enzymatic hydrolysis of cellulose with conversion has often been attributed to declining reactivity of the substrate as the more easily reacted material is thought to be consumed preferentially. To better understand the cause of this phenomenon, the enzymatic reaction of the nearly pure cellulose in Avicel was interrupted over the course of nearly complete hydrolysis. Then, the solids were treated with proteinase to degrade the cellulase enzymes remaining on the solid surface, followed by proteinase inhibitors to inactive the proteinase and successive washing with water, 1.0 M NaCl solution, and water. Next, fresh cellulase and buffer were added to the solids to restart hydrolysis. The rate of cellulose hydrolysis, expressed as a percent of substrate remaining at that time, was approximately constant over a wide range of conversions for restart experiments but declined continually with conversion for uninterrupted hydrolysis. Furthermore, the cellulose hydrolysis rate per adsorbed enzyme was approximately constant for the restart procedure but declined with conversion when enzymes were left to react. Thus, the drop off in reaction rate for uninterrupted cellulose digestion by enzymes could not be attributed to changes in substrate reactivity, suggesting that other effects such as enzymes getting "stuck" or otherwise slowing down may be responsible.  相似文献   

10.
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis.  相似文献   

11.
The influence of cellulose accessibility and protein loading on the efficiency of enzymatic hydrolysis of steam pretreated Douglas-fir was assessed. It was apparent that the lignin component significantly influences the swelling/accessibility of cellulose as at low protein loadings (5 FPU/g cellulose), only 16% of the cellulose present in the steam pretreated softwood was hydrolyzed while almost complete hydrolysis was achieved with the delignified substrate. When lignin (isolated from steam pretreated Douglas-fir) was added back in the same proportions it was originally found to the highly accessible and swollen, delignified steam pretreated softwood and to a cellulose control such as Avicel, the hydrolysis yields decreased by 9 and 46%, respectively. However, when higher enzyme loadings were employed, the greater availability of the enzyme could overcome the limitations imposed by both the lignin’s restrictions on cellulose accessibility and direct binding of the enzymes, resulting in a near complete hydrolysis of the cellulose.  相似文献   

12.
Bovine serum albumin (BSA) was applied as a model non-catalytic protein to enzymatic hydrolysis of Avicel and dilute acid pretreated corn stover at different reaction conditions to improve the understanding of its ability to enhance cellulose hydrolysis. Addition of BSA improved the 72 h hydrolysis yields in shake flasks by up to 26% for both substrates by reducing de-activation of the exoglucanases and by facilitating reductions in particle size and crystallinity during a magnetically stirred pre-incubation step. The enzyme stabilizing effect of BSA addition was most striking for batch hydrolysis in a stirred tank reactor, with glucose yields increasing by 76% after 72 h for Avicel and by 40% after 145 h for corn stover. Application of BSA to continuous hydrolysis for a mean residence time of 24h gave 33% and 40% higher glucose yields for corn stover and Avicel compared to the controls.  相似文献   

13.
The possible role of hydrogen peroxide in brown-rot decay was investigated by studying the effects of pretreatment of spruce wood and microcrystalline Avicel cellulose with H2O2 and Fe2+ (Fenton's reagent) on the subsequent enzymatic hydrolysis of the substrates. A crude endoglucanase preparation from the brown-rot fungus Poria placenta, a purified endoglucanase from Trichoderma reesei and a commercial Trichoderma cellulase were used as enzymes. Avicel cellulose and spruce dust were depolymerized in the H2O2/Fe2+ treatment. Mainly hemicelluloses were lost in the treatment of spruce dust. The effect of the pretreatment on subsequent enzymatic hydrolysis was found to depend on the nature of the substrate and the enzyme preparation used. Pretreatment with H2O2/Fe2+ clearly increased the amount of enzymatic hydrolysis of spruce dust with both the endoglucanases and the commercial cellulase. In all cases the amount of hydrolysis was increased about threefold. The hydrolysis of Avicel with the endoglucanases was also enhanced, whereas the hydrolysis with the commercial cellulase was decreased. Received: 23 December 1996 / Received revision: 17 April 1997 / Accepted: 19 April 1997  相似文献   

14.
Dilute acid as well as water only (hydrothermal) pretreatments often lead to a significant hemicellulose loss to soluble furans and insoluble degradation products, collectively termed as chars and/or pseudo‐lignin. In order to understand the factors contributing to reducing sugar yields from pretreated biomass and the possible influence of hemicellulose derived pseudo‐lignin on cellulose conversion at the moderate to low enzyme loadings necessary for favorable economics, dilute acid pretreatment of Avicel cellulose alone and mixed with beechwood xylan or xylose was performed at various severities. Following pretreatment, the solids were enzymatically hydrolyzed and characterized for chemical composition and physical properties by NMR, FT‐IR, and SEM imaging. It was found that hemicelluloses (xylan) derived‐pseudo‐lignin was formed at even moderate severities and that these insoluble degradation products can significantly retard cellulose hydrolysis. Furthermore, although low severity (CSF ~ 1.94) dilute acid pretreatment of a xylan–Avicel mixture hydrolyzed most of the xylan (98%) and produced negligible amounts of pseudo‐lignin, enzymatic conversion of cellulose dropped significantly (>25%) compared to cellulose pretreated alone at the same conditions. The drop in cellulose conversion was higher than realized for cellulase inhibition by xylooligomers reported previously. Plausible mechanisms are discussed to explain the observed reductions in cellulose conversions. Biotechnol. Bioeng. 2013; 110: 737–753. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
A thermostable beta-glucosidase from Clostridium thermocellum which is expressed in Escherichia coli was used to determine the substrate specificity of the enzyme. A restriction map of the beta-glucosidase gene cloned in plasmid pALD7 was determined. Addition of the E. coli cell extract (containing the beta-glucosidase) to the cellulase complex from C. thermocellum increased the conversion of crystalline cellulose (Avicel) to glucose. The increase was specifically due to hydrolysis of the accumulated cellobiose. A cellulose degradation process using beta-glucosidase to assist the potent cellulase complex of C. thermocellum, as shown here can open the way for industrial saccharification of cellulose to glucose.  相似文献   

16.
Enzymatic hydrolysis of cellulosic material is an essential step in the bioethanol production process. However, complete cellulose hydrolysis by cellulase is difficult due to the irreversible adsorption of cellulase onto cellulose. Thus, part of the cellulose remains in crystalline form after hydrolysis. In this study, after 96-h hydrolysis of Avicel crystalline cellulose, 47.1 % of the cellulase was adsorbed on the cellulose surface with 10.8 % crystalline cellulose remaining. In simultaneous saccharification and fermentation of 100 g/L Avicel with 1.0 filter paper unit/mL cellulase, a wild-type yeast strain produced 44.7 g/L ethanol after 96 h. The yield of ethanol was 79.7 % of the theoretical yield. On the other hand, a recombinant yeast strain displaying various cellulases, such as β-glucosidase, cellobiohydrolase, and endoglucanase, produced 48.9 g/L ethanol, which corresponds to 87.3 % of the theoretical yield. Higher ethanol production appears to be attributable to higher efficiency of cellulase displayed on the cell surface. These results suggest that cellulases displayed on the yeast cell surface improve hydrolysis of Avicel crystalline cellulose. Indeed, after the 96-h simultaneous saccharification and fermentation using the cellulase-displaying yeast, the amount of residual cellulose was 1.5 g/L, one quarter of the cellulose remaining using the wild-type strain, a result of the alleviation of irreversible adsorption of cellulases on the crystalline cellulose.  相似文献   

17.
Summary Crystalline cellulose Avicel has been hydrolyzed byTrichoderma viride cellulase (Meicelase CEPB) under vaned agitation conditions and the effect of agitation on the adsorption of cellulase on cellulose has been studied. Agitation was found to enhance the hydrolysis pf crystalline cellulose; possibly the agitation enhances the adsorption of exoglucanase to shift the adsorption balance of exoglucanase and endoglucanase to a direction favorable for their synergistic action on the surface of cellulose.  相似文献   

18.
Hydrolysis of cellulose to glucose in aqueous media catalyzed by the cellulase enzyme system suffers from slow reaction rates due in large part to the highly crystalline structure of cellulose and inaccessibility of enzyme adsorption sites. In this study, an attempt was made to disrupt the cellulose structure using the ionic liquid (IL), 1-n-butyl-3-methylimidazolium chloride, in a cellulose regeneration strategy which accelerated the subsequent hydrolysis reaction. ILs are a new class of non-volatile solvents that exhibit unique solvating properties. They can be tuned to dissolve a wide variety of compounds including cellulose. Because of their extremely low volatility, ILs are expected to have minimal environmental impact on air quality compared to most other volatile solvent systems. The initial enzymatic hydrolysis rates were approximately 50-fold higher for regenerated cellulose as compared to untreated cellulose (Avicel PH-101) as measured by a soluble reducing sugar assay.  相似文献   

19.
Wang Z  Xu JH  Feng H  Qi H 《Bioresource technology》2011,102(3):2890-2896
The profile of enzymatic saccharification of Avicel in the presence and absence of lignin has been described with a fractal kinetic model (Wang and Feng, 2010), in which the retarded hydrolysis rate of enzymatic saccharification of cellulose has been represented with a fractal exponent. The lignin inhibition in the enzymatic saccharification of cellulose is indexed by the increase of fractal exponent, which can not be fully counterbalanced by high cellulase loading due to the high fractal exponent at high cellulase loading. On the contrary, fractal kinetic analysis indicates that an addition of some nonionic surfactant/polymers decrease the fractal exponent to the original values of enzymatic saccharification of Avicel without lignin and the corresponding toxicity of nonionic surfactants/polymers on the consecutive ethanol fermentation strain Saccharomyces cerevisiae is also examined.  相似文献   

20.
Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid   总被引:2,自引:0,他引:2  
Solid acid-catalyzed hydrolysis of cellulose in ionic liquid was greatly promoted by microwave heating. H-form zeolites with a lower Si/Al molar ratio and a larger surface area showed a relatively higher catalytic activity. These solid catalysts exhibited better performance than the sulfated ion-exchanging resin NKC-9. Compared with conventional oil bath heating mode, microwave irradiation at an appropriate power significantly reduced the reaction time and increased the yields of reducing sugars. A typical hydrolysis reaction with Avicel cellulose produced glucose in around 37% yield within 8 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号