共查询到20条相似文献,搜索用时 15 毫秒
1.
Gill epithelia from adult and juvenile Aplysia were examined by conventional thin section and freeze-fracture methods. Freeze-fracture replicas of adult gill epithelium revealed septate and gap junctions, which served as membrane markers for the epithelial cells. In these same cell membranes, non-junctional rhombic arrays of intramembranous particles were observed on prominent ridges on the membrane P fracture face of some epithelial cells. In thin sections of adult epithelium, nerve terminals were observed abutting the lateral plasma membranes near the basal lamina of some epithelial cells. Correlative areas of plasma membrane in freeze-fracture replicas showed a close association between rhombic particle arrays and abutting nerve terminals. In thin sections of juvenile Aplysia, nerve terminals abutting the epithelial cells were not recognizable, and rhombic arrays were not observed in freeze-fracture replicas. This suggested that a developmental association existed between the appearance of rhombic arrays in adult epithelia and their innervation. It is not known with certainty if, in invertebrates, rhombic arrays are an essential structural entity of all innervated cell membranes; however, in the cells thus far studied, there appears to be an associative condition. In the case of the gill epithelium of Aplysia, rhombic arrays are located in the same vicinity as the abutting nerve terminals. Similar arrays of intramembranous particles have been observed in myoneural postjunctional complexes of other invertebrates and have been interpreted to be the morphological expression of neurotransmitter receptors. An analogous explanation is put forth, namely that rhombic arrays may represent the structural correlates of neurotransmitter receptors and/or ionic channels in innervated membranes of invertebrates. 相似文献
2.
We have studied the effects of dopamine on the gill withdrawal reflex evoked by tactile siphon stimulation in the margine mollusc Aplysia. Physiological concentrations of dopamine (diluted in seawater) were perfused through the gill during siphon stimulation series. The amplitude of the reflex was potentiated by dopamine and habituation of the reflex was prevented. This occurred with no change in the activity evoked in central motor neurons. These results lead us to conclude that the dopaminergic motor neuron L9 is modulating habituation in the periphery and that the central nervous system facilitatory control of the peripheral nervous system may act via a dopaminergic pathway. 相似文献
3.
Acetylcholine has been suggested as a neurotransmitter released in the Aplysia gill by peripheral afferents of central neurons and by peripheral neurons within the gill. The perfused gill, isolated from the abdominal ganglion, was examined. At concentrations greater than 1 microM, acetylcholine elicited a slowly developing tonic contraction of the afferent vein that reversed upon washout. This effect was observed on both quiescent and active preparations. At concentrations less than 1 microM, acetylcholine perfusion resulted in a reduction of gill tone. The excitatory effect of acetylcholine was reduced 80 and 60% by the cholinergic antagonists atropine and hexamethonium, respectively. The acetylcholine-evoked contraction was potentiated 2.5-fold when curare was coinfused. Carbachol did not mimic the excitatory effects of acetylcholine. At all concentrations examined (1-100 microM), carbachol infusion reduced baseline tension, the amplitude of spontaneous contractions and contractions evoked by FMRFamide and dopamine. Contractions evoked by perfusion of p-chlorophenylthiocyclic AMP were greatly reduced when carbachol was added to the perfusate. Further addition of curare reversibly blocked carbachol inhibition of the cyclic AMP-evoked contractions. These findings suggest that excitatory and inhibitory cholinergic receptors are involved in the regulation of gill contractile behavior by acetylcholine. 相似文献
4.
P C Ruben J W Swann D O Carpenter 《Canadian journal of physiology and pharmacology》1979,57(10):1088-1097
Isolated pinnules of the gill of Aplysia contract when dopamine (DA) is perfused through the bath. The contraction is not blocked by high-Mg2+ seawater, and reflects excitatory receptors for DA on the smooth muscle cells of the gill. The pinnule often shows irregular, spontaneous contractions which are blocked by high-Mg2+ seawater and 30 mM CoCl2. These contractions reflect spontaneous activity of a peripheral nerve plexus. No other transmitter was found to be directly excitatory on the muscle fibers, although there are inhibitory receptors for serotonin (5-HT). Tactile stimulation of the pinnule evoked a two-component contractile reflex contraction due to activation of the peripheral nerve plexus. Acetylcholine, octopamine, and 5-HT but not several other transmitters depressed these responses, presumably due to inhibitory receptors on the neurons of the peripheral plexus. 相似文献
5.
K Lukowiak 《Journal of neurobiology》1979,10(3):255-271
Repeated tactile stimulation of the siphon in Aphysia normally results in habituation of the gill withdrawal reflex and a concomitant decrease in the amplitude of the excitatory synaptic input ot gill motor neurons in the abdominal ganglion. It was found, however, that induced low-level tonic activity in motor neuron L9, which does not itself elicit a gill withdrawal movement, prevented habituation of the reflex from occurring. Further, in preparations already habituated, this tonic low-level activity brought about a reversal of habituation. Although tonic L9 activity prevented the occurrence of habituation or brought about its reversal, it did not interfere with the synaptic decremental process which normally accompanies gill reflex habituation. Motor neurons L7 and LDG1 were found not to possess this ability of L9 to modulate gill reflex habituation. Evidence suggests that L9's modulatory effect is mediated in the periphery, in the gill and not centrally in the abdominal ganglion. 相似文献
6.
The suprafusion of two endogenous neuropeptides, arginine vasotocin (AVT) and small cardioactive peptide B (SCPB), over the abdominal ganglion of Aplysia californica significantly affects the ability of a central gill motor neuron to elicit a gill withdrawal response. Gill motor neurons L7 or LDG1 were depolarized to produce the same number of action potentials (APs) on each trial. When AVT (10(-6)M) was suprafused, the motor neurons' ability to elicit a gill movement was suppressed; while SCPB (10(-6)M) superfusion facilitated the response. Neither peptide altered the passive membrane properties of the motor neurons nor did they affect the duration of their APs. These results are consistent with the hypothesis that the peptides act via central control neurons which exert both suppressive and facilitatory control over gill reflex behaviors and associated neural activity. 相似文献
7.
The effects of small cardioactive peptide B on the isolated heart and gill of Aplysia californica 总被引:1,自引:0,他引:1
D R Cawthorpe J Rosenberg W F Colmers K Lukowiak G I Drummond 《Canadian journal of physiology and pharmacology》1985,63(8):918-924
Effects of small cardioactive peptide B on the physiology of the isolated heart and gill preparations from the mollusc Aplysia californica were examined. In addition, the effects of small cardioactive peptide B and FMRFamide (Phe-Met-Arg-Phe-NH2) on adenylate cyclase activity were compared in particulate fractions of heart and gill tissues, respectively. Small cardioactive peptide B was found to exert dose-dependent, reversible changes in cardiac activity when perfused through the isolated heart. The EC50 values effecting changes in heart rate and force of contraction were 3 X 10(-11) and 3 X 10(-10) M, respectively; minimum concentrations found to effect changes in heart rate and force of contraction were normally 10(-15) and 10(-12) M, respectively. However, some winter hearts demonstrated threshold sensitivity to small cardioactive peptide B at concentrations as low as 10(-17) M. When perfused through the isolated gill, small cardioactive peptide B was found to suppress the gill withdrawal response amplitude with a threshold concentration of 10(-14) M and an EC50 value of 3 X 10(-11) M. Suppression of the gill withdrawal response amplitude by small cardioactive peptide B was found to be dose dependent and reversible up to a concentration of 10(-9) M. At higher concentrations, the suppression tended to persist irreversibly. Small cardioactive peptide B stimulated adenylate cyclase activity in particulate fractions of both heart and gill tissues with an EC50 of 0.1 and 1.0 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
8.
Ken Lukowiak 《Developmental neurobiology》1979,10(3):255-271
Repeated tactile stimulation of the siphon in Aplysia normally results in habituation of the gill withdrawal reflex and a concomitant decrease in the amplitude of the excitatory synaptic input to gill motor neurons in the abdominal ganglion. It was found, however, that induced low-level tonic activity in motor neuron L9, which does not itself elicit a gill withdrawal movement, prevented habituation of the reflex from occurring. Further, in preparations already habituated, this tonic low-level activity brought about a reversal of habituation. Although tonic L9 activity prevented the occurrence of habituation or brought about its reversal, it did not interfere with the synaptic decremental process which normally accompanies gill reflex habituation. Motor neurons L7 and LDG1 were found not to possess this ability of L9 to modulate gill reflex habituation. Evidence suggests that L9's modulatory effect is mediated in the periphery, in the gill and not centrally in the abdominal ganglion. 相似文献
9.
In Aplysia, the central nervous system and peripheral nervous system interact and form an integrated system that mediates adaptive gill withdrawal reflex behaviours evoked by tactile stimulation of the siphon. The central nervous system (CNS) exerts suppressive and facilitatory control over the peripheral nervous system (PNS) in the mediation of these behaviours. We found that the CNS's suppressive control over the PNS was increased significantly in animals engaged in sexual activity as either a male or female. In control animals, the evoked gill withdrawal reflex met a minimal response amplitude criterion, while in sexually active animals the reflex did not meet this criterion. At the neuronal level, the increased CNS suppressive control was manifested as a decrease in excitatory input to the central gill motor neurons. 相似文献
10.
FMRFamide prevents habituation and potentiates the gill withdrawal reflex in the isolated gill preparation of Aplysia 总被引:1,自引:0,他引:1
Perfusion of the endogenous neuropeptide, FMRFamide, through the isolated gill of Aplysia facilitated the amplitude of the gill withdrawal reflex (GWR) evoked by tactile stimulation of the gill. The GWR was facilitated in a dose-dependent manner. The facilitation of the GWR produced by FMRFamide perfusion was reversible. In addition to facilitating GWR amplitude, FMRFamide perfusion could also prevent habituation of the reflex. It is hypothesized that FMRFamide may play a role in the peripheral nervous system (PNS) in the gill in the mediation of behavioral state and modulation of adaptive gill behaviors. 相似文献
11.
B S Rothman S Dekruyff M Talebian J G Menon C R Squire C H Yeh T D Lee 《The Journal of biological chemistry》1992,267(35):25135-25140
We have been investigating the role of proteolytic enzymes in the inactivation of peptide neurotransmitters in the marine snail Aplysia. Previous studies (Squire, C. R., Talebian, M., Menon, J. G., Dekruyff, S. D., Lee, T. D., Shively, J. E., and Rothman, B. S. (1991) J. Biol. Chem. 266, 22355-22363) showed that neuroactive fragments of the neurotransmitter alpha-bag cell peptide (alpha-BCP) were rapidly degraded (t1/2 = 0.5-2.7 min) in plasma, hemolymph that had been cleared by centrifugation. Degradation was caused by one or more enzymes resembling mammalian leucine amino-peptidase (LAP, EC 3.4.11.1). In this report we show that three other Aplysia peptide neurotransmitters, beta-BCP(1-5) (Arg-Leu-Arg-Phe-His), FMRFa (Phe-Met-Arg-Phe-amide), and SCPB(1-9) (Met-Asn-Tyr-Leu-Ala-Phe-Pro-Arg-Met-amide) are rapidly degraded (t1/2 = 0.3-2.4 min) in plasma by apparently the same LAP-like enzyme(s). Our findings strongly suggest that the LAP-like enzyme(s), by means of its broad substrate specificity and access to the extracellular spaces of the nervous system in vivo, plays a significant role in the inactivation of many Aplysia peptide neurotransmitters, and they raise the possibility that proteolytic enzymes in the extracellular fluid contribute significantly to the inactivation of peptide neurotransmitters in other animal species. 相似文献
12.
E C Cropper F S Vilim A Alevizos R Tenenbaum M A Kolks S Rosen I Kupfermann K R Weiss 《Peptides》1991,12(4):683-690
Important insights into mechanisms by which neuromuscular activity can be modulated have been gained by the study of experimentally advantageous preparations such as the ARC neuromuscular system of Aplysia. Previous studies have indicated that one source of modulatory input to the ARC muscle is its own two motor neurons, B15 and B16. Both of these neurons synthesize multiple peptide cotransmitters in addition to their primary neurotransmitter acetylcholine (ACh). Peptides present in the ARC motor neurons include SCPA, SCPB, buccalin A and B, and myomodulin A. We have now purified a novel neuropeptide, myomodulin B, which is structurally similar to myomodulin A. Myomodulin B is present in two identified Aplysia neurons that contain myomodulin A; the ARC motor neuron B16 and the abdominal neuron L10. Ratios of myomodulin A to myomodulin B are approximately 6:1 in both cells. Like myomodulin A, myomodulin B potentiates ARC neuromuscular activity; it acts postsynaptically, and increases the size and relaxation rate of muscle contractions elicited either by motor neuron stimulation or by direct application of ACh to the ARC. When myomodulin A is applied to the ARC in high doses (e.g., at about 10(-7) M), it decreases the size of motor neuron-elicited muscle contractions. This inhibitory effect is never seen with myomodulin B. Thus, despite the structural similarity between the two myomodulins, there exists what may be an important difference in their bioactivity. 相似文献
13.
Mastoparans are a family of 14-residue peptide toxins from wasp venom which have been proposed to stimulate secretion from a variety of cells, by directly activating GTP-binding regulatory proteins (G proteins). In vitro studies have shown that mastoparans activate G proteins by a mechanism remarkably similar to that used by agonist-bound receptors (Higashijima, T., Uzu, S., Nakajima, T., and Ross, E. M. (1988) J. Biol. Chem. 263, 6491-6494). Here, we report the conformation of mastoparan-X (INWKGIAAMAKKLL-NH2) when it is bound to the alpha subunits of recombinant G(i) and G(o), derived from an analysis of transferred nuclear Overhauser effects in a two-dimensional 1H NMR spectrum of mastoparan-X obtained in the presence of these G proteins. Restrained molecular dynamic simulations with NMR-derived distance constraints were used to determine conformations consistent with NMR data. The G(i)- and G(o)-bound conformations of mastoparan-X are very similar, and in both cases, a major part of the molecule adopts an amphiphilic alpha-helical conformation. The lysine residues are known to be crucial for activity, and it is thus likely that at least the polar face of the amphiphilic helix is in contact with the G proteins. These conclusions should be useful in the design of potent and selective analogs of mastoparan and in the development of models for receptor-G protein interaction. 相似文献
14.
Pedal peptide (Pep) is a very abundant neuropeptide in Aplysia. A radioimmunoassay (RIA) was developed to quantify Pep-like immunoreactivity (IR-Pep) in tissue extracts. IR-Pep was present in very high concentrations in the central nervous system (CNS) and two peripheral tissues: the large hermaphroditic duct (LHD) and the foot. RIA of fractions from high-pressure liquid chromatography (HPLC) indicated that Pep itself was the predominant immunoreactive species in each of these tissues. Lower concentrations of Pep were found in a number of other peripheral tissues. Incorporation of labelled amino acid indicated that Pep was synthesized in the LHD, whereas Pep in the foot was synthesized primarily in central neurons and transported to the foot. IR-Pep was further localized by immunocytology. All peripheral IR-Pep appeared to be associated with neuronal fibers, most commonly varicose axons. Immunoreactive innervation of the LHD and foot was particularly dense but positive staining was also observed in other tissues including tegument, gill, gut, and heart, IR-Pep innervation in all tissues including the LHD appeared to be localized predominantly in muscular portions of the tissue. Spontaneous contractions of isolated LHD were accelerated by the application of Pep. Pep appears to act as a transmitter or neuromodulator at a number of different sites in Aplysia. 相似文献
15.
The presence of a vasopressin (VP)- or vasotocin (VT)-like peptide in the central nervous system of the gastropod mollusc Aplysia has been indicated previously. In the case of Aplysia californica, HPLC and RIA evidence suggested the peptide was VT-like but not identical with the nonmammalian vertebrate peptide [Arg8]VT (AVT). In the present study, anterior ganglia extracts from the related species Aplysia kurodai were analyzed by HPLC followed by RIA. Further analysis of the major AVT-IR peak showed it to be indistinguishable, in three distinct solvent systems, from the sea snail venom peptide Lys-conopressin G, but to be different from the vertebrate peptides [Arg8]VP (AVP), [Lys8]VP (LVP), AVT, oxytocin (OT), mesotocin, isotocin, aspargtocin, glumitocin, and valitocin, from the sea snail venom peptide Arg-conopressin S, and from the peptides [Lys8]VT and [Gln8]OT. In addition, the carboxymethylated (CM) A. kurodai peptide had the same HPLC retention time as CM-Lys-conopressin G. The HPLC/RIA results suggest that (i) based on the properties of the solvent systems used, the A. kurodai peptide has two basic amino acids (like the conopressins but unlike the vertebrate peptides), and (ii) there is a high probability that the A. kurodai peptide is identical with Lys-conopressin G. 相似文献
16.
Morishita F Nakanishi Y Sasaki K Kanemaru K Furukawa Y Matsushima O 《Cell and tissue research》2003,312(1):95-111
NdWFamide is an Aplysia cardioexcitatory tri-peptide containing D-tryptophan. To investigate the roles of this peptide, we examined the immunohistochemical distribution of NdWFamide-positive neurons in Aplysia tissues. All the ganglia of the central nervous system (CNS) contained NdWFamide-positive neurons. In particular, two left upper quadrant cells in the abdominal ganglion, and the anterior cells in the pleural ganglion showed extensive positive signals. NdWFamide-positive processes were observed in peripheral tissues, such as those of the cardio-vascular system, digestive tract, and sex-accessory organs, and in the connectives or neuropils in the CNS. NdWFamide-positive neurons were abundant in peripheral plexuses, such as the stomatogastric ring. To examine the NdWFamide contents of tissues, we fractionated peptidic extracts from the respective tissues by reversed-phase high-pressure liquid chromatography and then assayed the fractions by competitive enzyme-linked immunosorbent assay. A fraction corresponding to the retention time of synthetic NdWFamide contained the most immunoreactivity, indicating that the tissues contained NdWFamide. The prevalence of the NdWFamide content was roughly in the order: abdominal ganglion >heart >gill >blood vessels >digestive tract. In most of the tissues containing NdWFamide-positive nerves, NdWFamide modulated the motile activities of the tissues. Thus, NdWFamide seems to be a versatile neurotransmitter/modulator of Aplysia and probably regulates the physiological activities of this animal. 相似文献
17.
18.
19.
20.
The basal apparatus. Mass isolation from the molluscan ciliated gill epithelium and a preliminary characterization of striated rootlets 总被引:9,自引:7,他引:2 下载免费PDF全文
《The Journal of cell biology》1975,64(2):408-420
The basal apparatus, consisting of an array of interconnected basal bodies bearing bifurcating striated rootlets encompassing a nucleus, has been isolated from hypertonically deciliated columnar gill epithelial cells of the bay scallop Aequipecten irradians through gentle lysis with Triton X-100. The rootlets, 8-10 mum in length, were not easily preserved with conventional electron microscope fixatives, suggesting that the extent of their contribution to cellular architecture has been somewhat underestimated, even though Englemann described many of the structural details of the basal apparatus in 1880. The striated rootlets were soluble at high but not at low pH, in 2 M solutions of sodium azide and potassium thiocyanate but not sodium or potassium chloride, in 1% deoxycholate but not digitonin, and in the denaturing solvents 6 M guanidine-HC1, 8 M urea, and 1% sodium dodecylsulfate at 100 degrees C. The protein found consistently when rootlets were solubilized migrated on SDS-polyacrylamide gels as a closely spaced doublet with apparent molecular weights of 230,000 and 250,000 daltons. This unique protein, distinct from tropocollagen or various muscle components, has been named ankyrin because of the rootlet's anchor-like function in the cell. 相似文献