首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA与蛋白质结合的荧光测定   总被引:1,自引:0,他引:1  
构建了插入λ阻抑蛋白(Rep)的操纵基因(OR)和BglⅡ识别位点的PBR322重组质粒。阻抑蛋白与该质粒的相互作用可用BglⅡ对它的水解作用引起的EB荧光变化来研究。在E.coli中表达的Rep表现了与该重组质粒结合的活力。核苷酸序列具精确二重对称性的OR(ORcons)对Rep的亲和力比天然的OR1小。  相似文献   

2.
Many disordered proteins function via binding to a structured partner and undergo a disorder-to-order transition. The coupled folding and binding can confer several functional advantages such as the precise control of binding specificity without increased affinity. Additionally, the inherent flexibility allows the binding site to adopt various conformations and to bind to multiple partners. These features explain the prevalence of such binding elements in signaling and regulatory processes. In this work, we report ANCHOR, a method for the prediction of disordered binding regions. ANCHOR relies on the pairwise energy estimation approach that is the basis of IUPred, a previous general disorder prediction method. In order to predict disordered binding regions, we seek to identify segments that are in disordered regions, cannot form enough favorable intrachain interactions to fold on their own, and are likely to gain stabilizing energy by interacting with a globular protein partner. The performance of ANCHOR was found to be largely independent from the amino acid composition and adopted secondary structure. Longer binding sites generally were predicted to be segmented, in agreement with available experimentally characterized examples. Scanning several hundred proteomes showed that the occurrence of disordered binding sites increased with the complexity of the organisms even compared to disordered regions in general. Furthermore, the length distribution of binding sites was different from disordered protein regions in general and was dominated by shorter segments. These results underline the importance of disordered proteins and protein segments in establishing new binding regions. Due to their specific biophysical properties, disordered binding sites generally carry a robust sequence signal, and this signal is efficiently captured by our method. Through its generality, ANCHOR opens new ways to study the essential functional sites of disordered proteins.  相似文献   

3.
三链DNA的形成抑制DNA结合蛋白与启动子的结合   总被引:4,自引:1,他引:3  
电泳迁移分析方法及DNaseⅠ足迹实验表明21nt脱氧寡核苷酸G3TG2T GT2G5TG2TGT(CP1)与乙肝病毒(HBV)核心启动子(Cp)片段之间三链DNA的形成有较高的特异性及稳定性.凝胶滞留实验显示, 在大鼠肝细胞核提取物体外转录系统中, CP1可特异地抑制DNA结合蛋白与Cp片段的结合, 而不能与Cp结合形成三链DNA的脱氧寡核苷酸CP3(TGTG2TG5T2GTG2TG3)对蛋白与Cp的结合并无抑制作用.这些结果表明, 三链DNA的形成有可能抑制HBV DNA的转录.  相似文献   

4.
在IRIS Indigo2(SGI公司)工作站上,利用InsightⅡ/MSI软件包,以TAT三链DNA为模板,采用同源模建的方法,分别建立起两个含21nt的脱氧寡核苷酸CP1(G3TG2TGT2G5TG2TGT)和CP3(TGTG2TG5T2GTG2TG3)的三维结构.采用分子力学方法进行能量优化,将得到的能量最低结构作为分子的优势构象.研究结果显示,CP1的能量低于CP3的能量,即前者的结构较后者稳定.从而证明了CP1与乙肝病毒(HBV)的核心启动子(Cp)片段之间能稳定地形成三链DNA,并能特异性地抑制DNA结合蛋白与Cp片段的结合.这些结果表明,三链DNA的形成有可能抑制DNA的转录.  相似文献   

5.
Computational approaches for predicting protein-protein interfaces are extremely useful for understanding and modelling the quaternary structure of protein assemblies. In particular, partner-specific binding site prediction methods allow delineating the specific residues that compose the interface of protein complexes. In recent years, new machine learning and other algorithmic approaches have been proposed to solve this problem. However, little effort has been made in finding better training datasets to improve the performance of these methods. With the aim of vindicating the importance of the training set compilation procedure, in this work we present BIPSPI+, a new version of our original server trained on carefully curated datasets that outperforms our original predictor. We show how prediction performance can be improved by selecting specific datasets that better describe particular types of protein interactions and interfaces (e.g. homo/hetero). In addition, our upgraded web server offers a new set of functionalities such as the sequence-structure prediction mode, hetero- or homo-complex specialization and the guided docking tool that allows to compute 3D quaternary structure poses using the predicted interfaces. BIPSPI+ is freely available at https://bipspi.cnb.csic.es.  相似文献   

6.
7.
Many important protein–protein interactions are mediated by the binding of a short peptide stretch in one protein to a large globular segment in another. Recent efforts have provided hundreds of examples of new peptides binding to proteins for which a three-dimensional structure is available (either known experimentally or readily modeled) but where no structure of the protein–peptide complex is known. To address this gap, we present an approach that can accurately predict peptide binding sites on protein surfaces. For peptides known to bind a particular protein, the method predicts binding sites with great accuracy, and the specificity of the approach means that it can also be used to predict whether or not a putative or predicted peptide partner will bind. We used known protein–peptide complexes to derive preferences, in the form of spatial position specific scoring matrices, which describe the binding-site environment in globular proteins for each type of amino acid in bound peptides. We then scan the surface of a putative binding protein for sites for each of the amino acids present in a peptide partner and search for combinations of high-scoring amino acid sites that satisfy constraints deduced from the peptide sequence. The method performed well in a benchmark and largely agreed with experimental data mapping binding sites for several recently discovered interactions mediated by peptides, including RG-rich proteins with SMN domains, Epstein-Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with Argonaute PIWI domain. The method, and associated statistics, is an excellent tool for predicting and studying binding sites for newly discovered peptides mediating critical events in biology.  相似文献   

8.
Abstract

A systematic analysis has been carried out to examine all the stereochemically possible bifurcated hydrogen bonds including those of cross strand type between propeller twisted base pairs in DNA double helices by stereochemical considerations involving base pairs alone and by molecular mechanics studies on dimer and trimer duplexes. The results show that there are limited number of combinations of adjacent base pairs that would facilitate bifurcated cross- strand hydrogen bond (CSH). B-type helices concomitant with negative propeller twist seem to be more favored for the occurrence of CSH than canonical A-type helices because of slide in the latter. The results also demonstrate that helices with appropriate sequences may possess continuous run of these propeller twist driven cross strand hydrogen bonds indicating that they may infact be considered as yet another general structural feature of DNA helices.  相似文献   

9.
The presence of calmodulin-binding sites on chromaffin granule membranes has been investigated. Saturable, high-affinity 125I-calmodulin-binding sites (KD = 9.8 nM; Bmax = 25 pmol/mg protein) were observed in the presence of 10(-4) M free calcium. A second, nonsaturable, calmodulin-binding activity could also be detected at 10(-7) M free calcium. No binding occurred at lower calcium levels. When chromaffin granule membranes were delipidated by solvent extraction, calmodulin binding was observed at 10(-4) M free calcium. However no binding was detected at lower calcium concentrations. Thus it appears that a calcium concentration of 10(-7) M promotes the binding of calmodulin to some solvent-soluble components of the chromaffin granule membrane. Calmodulin-binding proteins associated with the granule membrane identified by photoaffinity cross-linking. A calmodulin-binding protein complex, of molecular weight 82K, was formed in the presence of 10(-4) M free calcium. This cross-linked product was specific because it was not detected either in the absence of calcium, in the presence of nonlabeled calmodulin, or in the absence of cross-linker activation. When solvent-treated membranes were used, a second, specific, calmodulin-binding protein complex (70K) was formed. Since the apparent molecular weight of calmodulin in our electrophoresis system was 17K, these experiments suggested the presence of two calmodulin-binding proteins, of molecular weights 65K and 53K, in the chromaffin granule membrane. This result was confirmed by the use of calmodulin-affinity chromatography. When detergent-solubilized membranes were applied on the column in the presence of calcium, two polypeptides of apparent molecular weights of 65K and 53K were specifically eluted by EGTA buffers. Since detergent treatments or solvent extractions are necessary to detect the 53K calmodulin-binding protein, it is concluded that only the 65K calmodulin-binding polypeptide may play a role in the interaction between calmodulin and secretory granules in chromaffin cells.  相似文献   

10.
11.
The traditional Watson-Crick base pairs in DNA may occasionally adopt a Hoogsteen conformation, with a different organization of hydrogen bonds. Previous crystal structures have shown that the Hoogsteen conformation is favored in alternating AT sequences of DNA. Here we present new data for a different sequence, d(ATTAAT)2, which is also found in the Hoogsteen conformation. Thus we demonstrate that other all-AT sequences of DNA with a different sequence may be found in the Hoogsteen conformation. We conclude that any all-AT sequence might acquire this conformation under appropriate conditions. We also compare the detailed features of DNA in either the Hoogsteen or Watson-Crick conformations.  相似文献   

12.
Backbone hydrogen bonds are important for the structure and stability of proteins. However, since conventional site-directed mutagenesis cannot be applied to perturb the backbone, the contribution of these hydrogen bonds in protein folding and stability has been assessed only for a very limited set of small proteins. We have here investigated effects of five amide-to-ester mutations in the backbone of a PDZ domain, a 90-residue globular protein domain, to probe the influence of hydrogen bonds in a β-sheet for folding and stability. The amide-to-ester mutation removes NH-mediated hydrogen bonds and destabilizes hydrogen bonds formed by the carbonyl oxygen. The overall stability of the PDZ domain generally decreased for all amide-to-ester mutants due to an increase in the unfolding rate constant. For this particular region of the PDZ domain, it is therefore clear that native hydrogen bonds are formed after crossing of the rate-limiting barrier for folding. Moreover, three of the five amide-to-ester mutants displayed an increase in the folding rate constant suggesting that the hydrogen bonds are involved in non-native interactions in the transition state for folding.  相似文献   

13.
14.
Two folate binding proteins are present in human milk; one of 27 kDa is a cleavage product of the other one (100 kDa) which possesses a hydrophobic membrane anchor. A drastic change of radioligand binding characteristics and appearance of aggregated weak-radioligand affinity forms on gel filtration occurred at low concentrations of both proteins in the absence of Triton X-100 or other amphiphatic substances, e.g. cetyltrimethylammonium and phospholipids. These findings are consistent with a model predicting association between unliganded and liganded monomers resulting in weak-ligand affinity dimers. Amphiphatic substances form micelles and lipid bilayers which could separate hydrophobic unliganded monomers from hydrophilic liganded monomers (monomers become hydrophilic in the liganded state) thereby preventing association between these monomeric forms prevailing at low concentrations of the protein. Bio-Gel P-300 chromatography of the 27 kDa protein revealed a pronounced polymerization tendency, which diminished with decreasing protein concentrations, however, not in the presence of cetyltrimethylammonium. The data could have some bearings on observations indicating that naturally occurring amphiphatic substances, cholesterol and phospholipids, are necessary for the important clustering of membrane folate receptors.  相似文献   

15.
《Journal of molecular biology》2019,431(7):1481-1493
Building on the substantial progress that has been made in using free energy perturbation (FEP) methods to predict the relative binding affinities of small molecule ligands to proteins, we have previously shown that results of similar quality can be obtained in predicting the effect of mutations on the binding affinity of protein–protein complexes. However, these results were restricted to mutations which did not change the net charge of the side chains due to known difficulties with modeling perturbations involving a change in charge in FEP. Various methods have been proposed to address this problem. Here we apply the co-alchemical water approach to study the efficacy of FEP calculations of charge changing mutations at the protein–protein interface for the antibody–gp120 system investigated previously and three additional complexes. We achieve an overall root mean square error of 1.2 kcal/mol on a set of 106 cases involving a change in net charge selected by a simple suitability filter using side-chain predictions and solvent accessible surface area to be relevant to a biologic optimization project. Reasonable, although less precise, results are also obtained for the 44 more challenging mutations that involve buried residues, which may in some cases require substantial reorganization of the local protein structure, which can extend beyond the scope of a typical FEP simulation. We believe that the proposed prediction protocol will be of sufficient efficiency and accuracy to guide protein engineering projects for which optimization and/or maintenance of a high degree of binding affinity is a key objective.  相似文献   

16.
We develop a theory that explains how the thermally driven conformational fluctuations in the DNA binding domains (DBDs) of the DNA binding proteins (DBPs) are effectively coupled to the one-dimensional searching dynamics of DBPs for their cognate sites on DNA. We show that the rate γopt, associated with the flipping of conformational states of DBDs beyond which the maximum search efficiency of DBPs is achieved, varies with the one-dimensional sliding length L as γoptL−2 and with the number of roadblock protein molecules present on the same DNA m as γoptm2. The required free energy barrier ERTO associated with this flipping transition seems to be varying with L as ERTO ∝ ln L2. When the barrier height associated with the conformational flipping of DBDs is comparable with that of the thermal free energy, then the possible value of L under in vivo conditions seems to be L ≤ 70 bps.  相似文献   

17.
Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.613 α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.613/10-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole force fields and assumed secondary structures used in low-resolution refinement of electron density of proteins, such structures in the PDB often show linear hydrogen bonding.  相似文献   

18.
19.
The T4 phage protein Arn (Anti restriction nuclease) was identified as an inhibitor of the restriction enzyme McrBC. However, until now its molecular mechanism remained unclear. In the present study we used structural approaches to investigate biological properties of Arn. A structural analysis of Arn revealed that its shape and negative charge distribution are similar to dsDNA, suggesting that this protein could act as a DNA mimic. In a subsequent proteomic analysis, we found that the bacterial histone-like protein H-NS interacts with Arn, implying a new function. An electrophoretic mobility shift assay showed that Arn prevents H-NS from binding to the Escherichia coli hns and T4 p8.1 promoters. In vitro gene expression and electron microscopy analyses also indicated that Arn counteracts the gene-silencing effect of H-NS on a reporter gene. Because McrBC and H-NS both participate in the host defense system, our findings suggest that T4 Arn might knock down these mechanisms using its DNA mimicking properties.  相似文献   

20.
Evidence that Protein Binding Specifies Sites of DNA Demethylation   总被引:17,自引:5,他引:12       下载免费PDF全文
It has been hypothesized that protein factors may protect CpG islands from methyltransferase during development and that demethylation may involve protein-DNA interactions at demethylated sites. However, direct evidence has been lacking. In this study, demethylation at the EBNA-1 binding sites of the Epstein-Barr virus latent replication origin, oriP, was investigated by using human cells. Several novel findings are discussed. First, there are specific preferential demethylation sites within the oriP region. Second, the DNA sequence of oriP alone is not the target of an active demethylation process. Third, EBNA-1 binding is required for the site-specific demethylation in oriP. Interestingly, CpG sites adjacent to and between the EBNA-1 sites do not become demethylated. Fourth, demethylation of the first DNA strand in oriP at the EBNA-1 binding sites involves a passive (replication-dependent) mechanism. The second-strand demethylation appears to occur through an active mechanism. That is, EBNA-1 protein binding prevents the EBNA-1 binding sites from being remethylated after one round of DNA replication, and it appears that an active demethylase then demethylates these hemimethylated sites. This study provides clear evidence that protein binding specifies sites of DNA demethylation and provides insights into the sequence of steps and the mechanism of demethylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号