首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneous immunity against Bcl-xL in cancer patients   总被引:4,自引:0,他引:4  
It is well-established that peptide epitopes derived from human tumor-associated Ags can be recognized by CTL in the context of the MHC molecule. However, the vast majority of Ags described are not vital for survival and growth of the tumor cells, and immunoselection of Ag-loss variants during immunotherapy has been demonstrated in several cases. Malfunctions in death pathways observed in human cancers are often due to overexpression of antiapoptotic proteins in the Bcl-2 protein family, i.e., Bcl-2, Mcl-1, and Bcl-xL. These antiapoptotic proteins are implicated in cancer development, tumor progression, and drug resistance. The general overexpression of the antiapoptotic members of the Bcl-2 family in cancer and the fact that down-regulation or loss of expression of these proteins as a means of immune escape would impair sustained tumor growth makes them very attractive targets for anticancer immunotherapy. Recently, we identified spontaneous T cell responses against Bcl-2- and Mcl-1-derived peptides in patients suffering from cancers of different origin. In this study, we demonstrate that Bcl-xL is a target for T cell recognition in cancer patients. Thus, we describe spontaneous HLA-A2-restricted cytotoxic T cell responses against peptide epitopes derived from Bcl-xL by means of ELISPOT and flow cytometry stainings, whereas no responses were detected against any of the Bcl-xL epitopes in any healthy controls. Moreover, Bcl-xL-specific T cells are cytotoxic against HLA-matched cancer cells of different origin. Thus, cellular immune responses against apoptosis inhibitors like the Bcl-2 family proteins appear to represent a general feature in cancer.  相似文献   

2.
Members of the Bcl-2-protein family are key controllers of apoptotic cell death. The family is divided into antiapoptotic (including Bcl-2 itself, Bcl-xL, Mcl-1, etc.) and proapoptotic members (Bax, Bak, Bim, Bim, Puma, Noxa, Bad, etc.). These proteins are well known for their canonical role in the mitochondria, where they control mitochondrial outer membrane permeabilization and subsequent apoptosis. However, several proteins are recognized as modulators of intracellular Ca2+ signals that originate from the endoplasmic reticulum (ER), the major intracellular Ca2+-storage organelle. More than 25 years ago, Bcl-2, the founding member of the family, was reported to control apoptosis through Ca2+ signaling. Further work elucidated that Bcl-2 directly targets and inhibits inositol 1,4,5-trisphosphate receptors (IP3Rs), thereby suppressing proapoptotic Ca2+ signaling. In addition to Bcl-2, Bcl-xL was also shown to impact cell survival by sensitizing IP3R function, thereby promoting prosurvival oscillatory Ca2+ release. However, new work challenges this model and demonstrates that Bcl-2 and Bcl-xL can both function as inhibitors of IP3Rs. This suggests that, depending on the cell context, Bcl-xL could support very distinct Ca2+ patterns. This not only raises several questions but also opens new possibilities for the treatment of Bcl-xL-dependent cancers. In this review, we will discuss the similarities and divergences between Bcl-2 and Bcl-xL regarding Ca2+ homeostasis and IP3R modulation from both a molecular and a functional point of view, with particular emphasis on cancer cell death resistance mechanisms.  相似文献   

3.
The functions of the antiapoptotic proteins Bcl-2 and Bcl-xL were examined in glioblastoma cells. Expression of both Bcl-2 and Bcl-xL were found to be elevated in protein lysates from seven early passage cell lines derived from human glioblastoma tumors compared with non-neoplastic glial cells. Down-regulation of both bcl-2 and bcl-xL expression in glioblastoma cell lines U87 and NS008 with bcl-2/bcl-xL bispecific antisense oligonucleotide resulted in spontaneous cell death. The mechanism of cell death was partially caspase-dependent. Executioner caspase 6 and caspase 7, but not caspase 3, were involved in apoptosis induced by bcl-2/bcl-xL antisense treatment. Interestingly, western blots failed to demonstrate expression of caspase 3 in two of the seven glioblastoma cell lines examined. The data support the hypothesis that Bcl-2 and Bcl-xL are important in preventing cell death in glioblastoma cells. It also suggests that there are functional pathways capable of successful completion of caspase-dependent cell death in gliomas. These findings support a potential role of bcl-2/bcl-xL bispecifc antisense oligonucleotide therapy as a treatment strategy to enhance caspase-dependent cell death in patients with glioblastoma.  相似文献   

4.
Malia TJ  Wagner G 《Biochemistry》2007,46(2):514-525
Bcl-2 family proteins are essential regulators of cell death and exert their primary pro- or antiapoptotic roles at the mitochondrial outer membrane. Previously, pro- and antiapoptotic Bcl-2 proteins have been shown to interact with the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. VDAC is a 283-residue integral membrane protein that forms an aqueous pore in the outer mitochondrial membrane, through which metabolites and other small molecules pass between the cytosol and intermembrane space. The essential life-sustaining function of VDAC in metabolite trafficking is believed to be regulated by proteins of the Bcl-2 family. The protective role of antiapoptotic Bcl-xL may be through its interaction with VDAC. Here, VDAC has been expressed, purified, and refolded into a functional form amenable to NMR studies. Various biophysical experiments indicate that micelle-bound VDAC is in intermediate exchange between monomer and trimer. Using NMR spectroscopy, gel filtration, and chemical cross-linking, we obtained direct evidence for binding of Bcl-xL to VDAC in a detergent micelle system. The VDAC-interacting region of Bcl-xL was characterized by NMR with chemical shift perturbation and transferred cross-saturation. The interaction region was mapped to a putative helical hairpin motif of Bcl-xL that was found to insert into detergent micelles. Our results suggest that Bcl-xL can bind to one or two VDAC molecules forming heterodimers and heterotrimers. Our characterization of the VDAC/Bcl-xL complex offers initial structural insight into the role of antiapoptotic Bcl-xL in regulating apoptotic events in the mitochondrial outer membrane.  相似文献   

5.
We previously reported the Bcl-2/Bcl-xL-bispecific activity of the 2'-O-(2-methoxy)ethyl (2'-MOE)-modified gapmer antisense oligonucleotide 4625. This oligonucleotide has 100% complementarity to Bcl-2 and three mismatches to Bcl-xL. In the present study, the isosequential locked nucleic acid (LNA)-modified oligonucleotide 5005 was generated, and its ability to further improve the downregulation of the two antiapoptotic targets in tumor cells was examined. We demonstrate that compared with 4625, 5005 more effectively decreased the expression of the mismatching Bcl-xL target gene in MDA-MB-231 breast and H125 lung cancer cells. In both cell lines, antisense activity caused decreased cell viability by induction of apoptosis. Moreover, in combination with various anticancer agents, 5005 reduced tumor cell viability more effectively than 4625. We describe for the first time the functional comparison of isosequential Bcl-2/Bcl-xL-bispecific 2'-MOE and LNA-modified antisense oligonucleotides and report that the LNA analog more effectively downregulated the two apoptosis inhibitors overexpressed in human tumors. Our data underscore the ability of LNA modifications to enhance the efficacy and favorably modulate the target specificity of antisense oligonucleotides.  相似文献   

6.
Anti-apoptotic Bcl-2 family proteins have been reported to play an important role in apoptotic cell death of human malignancies. The aim of this study was to delineate the mechanism of anti-apoptotic Bcl-2 family proteins in pancreatic cancer (PaCa) cell survival. We first analyzed the endogenous expression and subcellular localization of anti-apoptotic Bcl-2 family proteins in six PaCa cell lines by Western blot. To delineate the functional role of Bcl-2 family proteins, siRNA-mediated knock-down of protein expression was used. Apoptosis was measured by Cell Death ELISA and Hoechst 33258 staining. In the results, the expression of anti-apoptotic Bcl-2 family proteins varied between PaCa cell lines. Mcl-1 knock-down resulted in marked cleavage of PARP and induction of apoptosis. Down-regulation of Bcl-2 or Bcl-xL had a much weaker effect. Simultaneous knock-down of Bcl-xL and Mcl-1 strongly induced apoptosis, but simultaneous knock-down of Bcl-xL/Bcl-2 or Mcl-1/Bcl-2 had no additive effect. The apoptosis-inducing effect of simultaneous knock-down of Bcl-xL and Mcl-1 was associated with translocation of Bax from the cytosol to the mitochondrial membrane, cytochrome c release, and caspase activation. These results demonstrated that Bcl-xL and Mcl-1 play an important role in pancreatic cancer cell survival. Targeting both Bcl-xL and Mcl-1 may be an intriguing therapeutic strategy in PaCa.  相似文献   

7.
Abstract

Prostate cancer is the most common malignancies among men. The present study is aimed at the investigation of dihydroxy gymnemic triacetate (DGT) from Gymnema sylvestre on mitochondrial apoptotic pathway and cell cycle arrest. Treatment of DGT resulted in a dose-dependent inhibition of growth of PC-3 cells. The cell cycle arrest was observed at the G2/M phase and accumulation of apoptotic cells was observed in DGT-treated prostate cancer cell lines. The occurrence of apoptosis in these cells was observed by DNA fragmentation. These events were associated with increased levels of pro-apoptotic proteins Bax, Bad and reduced levels of the antiapoptotic proteins Bcl-2, Bcl-xL and Mcl-1. DGT also induces the activation of caspase-9 and caspase-3. The above results, clearly, suggest that DGT induces apoptosis by the intrinsic pathways which could be very useful for the treatment of prostate cancer.  相似文献   

8.
The antiapoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL play important roles in inhibiting mitochondria-dependent extrinsic and intrinsic cell death pathways. It seems that these two proteins have distinct functions for inhibiting extrinsic and intrinsic cell death pathways. The overexpression of Bcl-2 is able to inhibit not only apoptotic cell death but also in part nonapoptotic cell death, which has the role of cell cycle arrest in the G1 phase, which may promote cellular senescence. The overexpression of Bcl-2 may also have the ability to enhance cell death in the interaction of Bcl-xL with other factors. The overexpression of Bcl-xL enhances autophagic cell death when apoptotic cell death is inhibited in Bax(-/-)/Bak(-/-) double knockout cells. This review discusses the previously unexplained aspects of Bcl-2 and Bcl-xL functions associated with cell death, for better understanding of their functions in the regulation.  相似文献   

9.
It is still unclear whether the BH3-only protein Puma (p53 up-regulated modulator of apoptosis) can prime cells to death and render antiapoptotic BH3-binding Bcl-2 homologues necessary for survival through its ability to directly interact with proapoptotic Bax and activate it. In this study, we provide further evidence, using cell-free assays, that the BH3 domain of Puma binds Bax at an activation site that comprises the first helix of Bax. We also show that, in yeast, Puma interacts with Bax and triggers its killing activity when Bcl-2 homologues are absent but not when Bcl-xL is expressed. Finally, endogenous Puma is involved in the apoptotic response of human colorectal cancer cells to the Bcl-2/Bcl-xL inhibitor ABT-737, even in conditions where the expression of Mcl-1 is down-regulated. Thus, Puma is competent to trigger Bax activity by itself, thereby promoting cellular dependence on prosurvival Bcl-2 family members.  相似文献   

10.
Among various molecular strategies by which prostate cancer cells evade apoptosis, phosphoinositide 3-kinase (PI3K)/Akt signaling represents a dominant survival pathway. However, different prostate cancer cell lines such as LNCaP and PC-3 display differential sensitivity to the apoptotic effect of PI3K inhibition in serum-free media, reflecting the heterogeneous nature of prostate cancer in apoptosis regulation. Whereas both cell lines are equally susceptible to LY294002-mediated Akt dephosphorylation, only LNCaP cells default to apoptosis, as evidenced by DNA fragmentation and cytochrome c release. In PC-3 cells, Akt deactivation does not lead to cytochrome c release, suggesting that the intermediary signaling pathway is short-circuited by an antiapoptotic factor. This study presents evidence that Bcl-xL overexpression provides a distinct survival mechanism that protects PC-3 cells from apoptotic signals emanating from PI3K inhibition. First, the Bcl-xL/BAD ratio in PC-3 cells is at least an order of magnitude greater than that of LNCaP cells. Second, ectopic expression of Bcl-xL protects LNCaP cells against LY294002-induced apoptosis. Third, antisense down-regulation of Bcl-xL sensitizes PC-3 cells to the apoptotic effect of LY294002. The physiological relevance of this Bcl-xL-mediated survival mechanism is further underscored by the protective effect of serum on LY294002-induced cell death in LNCaP cells, which is correlated with a multifold increase in Bcl-xL expression. In contrast to Bcl-xL, Bcl-2 expression levels are similar in both cells lines, and do not respond to serum stimulation, suggesting that Bcl-2 may not play a physiological role in antagonizing apoptosis signals pertinent to BAD activation in prostate cancer cells.  相似文献   

11.
C Nie  Y Luo  X Zhao  N Luo  A Tong  X Liu  Z Yuan  C Wang  Y Wei 《Cell death & disease》2014,5(10):e1495
The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.The apoptosis pathway is closely related to the Bcl-2 family proteins in which antiapoptotic members sequester multidomain proapoptotic proteins, thereby inhibiting their active role in apoptosis. In contrast, BH3-only proteins that are considered stress sensors can dissociate Bax-like proteins from their antiapoptotic sequestrators, and thus leading to apoptosis.1The expression of Bcl-2 family proteins is regulated during carcinogenesis,1 and the expression of both the Bcl-2 and Bcl-xL antiapoptotic proteins is associated with resistance to antitumor agents such as cisplatin (CP).2 The inhibition of the protective function of antiapoptotic Bcl-2 members can either restore the normal apoptotic process in cancer cells or circumvent resistance to chemotherapy.3,4 In this regard, enhanced expression of BH3-only proteins can effectively bind the antiapoptotic members and prevent the function of these proteins.Some reports suggest that the BH3-only protein Puma has important roles in p53-dependent and -independent apoptosis in human cancer cells and mediates cell death through the Bcl-2 family proteins Bax/Bak and the mitochondrial pathway.5,6 Our studies also reveal that Puma upregulation induces cell apoptosis in chemoresistant ovarian cancer cells,7,8 confirming the requisite role of Puma in chemosensitivity.7-Hydroxystaurosporine (UCN-01) is a protein kinase C-selective inhibitor that is successfully used in phase I and II clinical trials.9,10 As a modulator, UCN-01 enhances the cytotoxicity of other anticancer drugs such as DNA-damaging agents and antimetabolite drugs by putative abrogation of G2- and/or S-phase accumulation induced by these anticancer agents.11 As a single agent, UCN-01 exhibits two key biochemical effects, namely accumulation of cells in the G1 phase of the cell cycle and induction of apoptosis.12 Both these effects may be important for its anticancer activity. Previous studies have demonstrated that UCN-01 potently decreased the levels of activated the phosphorylation level of Akt (p-Akt) in in vitro or in in vivo systems.12, 13, 14 Some researchers have also approved that UCN-01 can modulate Bcl-2 family members to potentiate apoptosis in cancer cells.15,16 These reports suggest that Akt and Bcl-2 family proteins may be the potent targets of UCN-01 to trigger cancer cell apoptosis.In this study, we also investigate the role of Puma in UCN-01-induced apoptosis and confirm that p53-independent Puma induction is pivotal for the anticancer effects of UCN-01. Moreover, we first elucidate the detailed mechanism of Puma-induced apoptosis after UCN-01 treatment. We found that Puma expression mediated caspase-9 and caspase-3 activation. Among the caspase proteins, caspase-9 has a key role in Puma-induced apoptosis. Our data demonstrated that caspase-9 could mediate Puma-induced apoptosis through two feedback pathways. On the one hand, activated caspase-9 was initiated followed by caspase-3 activity, and activated caspase-3 cleaved XIAP in a positive feedback loop to strengthen Puma expression. On the other hand, caspase-9 itself cleaved antiapoptotic Bcl-2 and Bcl-xL to positively enhance Puma induction. These results provide the detailed mechanistic insight into therapeutic response to UCN-01 and the theoretical basis for its applications.  相似文献   

12.
13.
The Bcl-2 family proteins are the central regulators of apoptosis. Due to its predominant role in cancer progression, the Bcl-2 family proteins act as attractive therapeutic targets. Recently, molecular series of Benzothiazole Hydrazone (BH) inhibitors that exhibits drug-likeness characteristics, which selectively targets Bcl-xL have been reported. In the present study, docking was used to explore the plausible binding mode of the highly active BH inhibitor with Bcl-xL; and Molecular Dynamics (MD) simulation was applied to investigate the stability of predicted conformation over time. Furthermore, the molecular properties of the series of BH inhibitors were extensively investigated by pharmacophore based 3D-QSAR model. The docking correctly predicted the binding mode of the inhibitor inside the Bcl-xL hydrophobic groove, whereas the MD-based free energy calculation exhibited the binding strength of the complex over the time period. Furthermore, the residue decomposition analysis revealed the major energy contributing residues – F105, L108, L130, N136, and R139 – involved in complex stability. Additionally, a six-featured pharmacophore model – AAADHR.89 – was developed using the series of BH inhibitors that exhibited high survival score. The statistically significant 3D-QSAR model exhibited high correlation co-efficient (R2 = .9666) and cross validation co-efficient (Q2 = .9015) values obtained from PLS regression analysis. The results obtained from the current investigation might provide valuable insights for rational drug design of Bcl-xL inhibitor synthesis.  相似文献   

14.
By adulthood, sympathetic neurons have lost dependence on NGF and NT-3 and are able to survive in culture without added neurotrophic factors. To understand the molecular mechanisms that sustain adult neurons, we established low density, glial cell-free cultures of 12-wk rat superior cervical ganglion neurons and manipulated the function and/or expression of key proteins implicated in regulating cell survival. Pharmacological inhibition of PI 3-kinase with LY294002 or Wortmannin killed these neurons, as did dominant-negative Class IA PI 3-kinase, overexpression of Rukl (a natural inhibitor of Class IA PI 3-kinase), and dominant-negative Akt/PKB (a downstream effector of PI 3-kinase). Phospho-Akt was detectable in adult sympathetic neurons grown without neurotrophic factors and this was lost upon PI 3-kinase inhibition. The neurons died by a caspase-dependent mechanism after inhibition of PI 3-kinase, and were also killed by antisense Bcl-xL and antisense Bcl-2 or by overexpression of Bcl-xS, Bad, and Bax. These results demonstrate that PI 3-kinase/Akt signaling and the expression of antiapoptotic members of the Bcl-2 family are required to sustain the survival of adult sympathetic neurons.  相似文献   

15.
Key insight into the complexities of apoptosis may be gained from the study of its evolution in lower metazoans. In this study we describe two genes from a cnidarian, Aiptasia pallida, that are homologous to key genes in the apoptotic pathway from vertebrates. The first is a novel ancient caspase, acasp, that displays attributes of both initiator and executioner caspases and includes a caspase recruitment domain (CARD). The second, a Bcl-2 family member, abhp, contains a BH1 and BH2 domain and shares structural characteristics and phylogenetic affinity with a group of antiapoptotic Bcl-2s including A1 and Bcl-2L10. The breadth of occurrence of other invertebrate homologues across the phylogenetic trees of both genes suggests that the complexity of apoptotic pathways is an ancient trait that predates the evolution of vertebrates and higher invertebrates such as nematodes and flies. This paves the way for establishing new lower metazoan model systems for the study of apoptosis. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Stuart Newfeld]  相似文献   

16.
As a model for defining the role of lysosomal cathepsins in apoptosis, we characterized the action of the lysosomotropic agent LeuLeuOMe using distinct cellular models. LeuLeuOMe induces lysosomal membrane permeabilization, resulting in release of lysosomal cathepsins that cleave the proapoptotic Bcl-2 family member Bid and degrade the antiapoptotic member Bcl-2, Bcl-xL, or Mcl-1. The papain-like cysteine protease inhibitor E-64d largely prevented apoptosis, Bid cleavage, and Bcl-2/Bcl-xL/Mcl-1 degradation. The pancaspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(OMe)fluoromethyl ketone failed to prevent Bid cleavage and degradation of anti-apoptotic Bcl-2 homologues but substantially decreased cell death, suggesting that cathepsin-mediated apoptosis in these cellular models mostly follows a caspase-dependent pathway. Moreover, in vitro experiments showed that one or more of the cysteine cathepsins B, L, S, K, and H could cleave Bcl-2, Bcl-xL, Mcl-1, Bak, and BimEL, whereas no Bax cleavage was observed. On the basis of inhibitor studies, we demonstrate that lysosomal disruption triggered by LeuLeuOMe occurs before mitochondrial damage. We propose that degradation of anti-apoptotic Bcl-2 family members by lysosomal cathepsins synergizes with cathepsin-mediated activation of Bid to trigger a mitochondrial pathway to apoptosis. Moreover, XIAP (X-chromosome-linked inhibitor of apoptosis) was also found to be a target of cysteine cathepsins, suggesting that cathepsins can mediate caspase-dependent apoptosis also downstream of mitochondria.  相似文献   

17.
Overexpression of Bcl-xL, an anti-apoptotic member of the Bcl-2 family, negatively correlates with the sensitivity of various cancers to chemotherapeutic agents. We show here that high levels of expression of Bcl-xL promoted apoptosis of cells treated with an antisense oligonucleotide (5'Bcl-x AS) that shifts the splicing pattern of Bcl-x pre-mRNA from the anti-apoptotic variant, Bcl-xL, to the pro-apoptotic variant, Bcl-xS. This surprising finding illustrates the advantage of antisense-induced modulation of alternative splicing versus down-regulation of targeted genes. It also suggests a specificity of the oligonucleotide effects since non-cancerous cells with low levels of Bcl-xL should resist the treatment. 5'Bcl-x AS sensitized cells to several antineoplastic agents and radiation and was effective in promoting apoptosis of MCF-7/ADR cells, a breast cancer cell line resistant to doxorubicin via overexpression of the mdr1 gene. Efficacy of 5'Bcl-x AS combined with chemotherapeutic agents in the PC3 prostate cancer cell line may be translated to clinical prostate cancer since recurrent prostate cancer tissue samples expressed higher levels of Bcl-xL than benign prostate tissue. Treatment with 5'Bcl-x AS may enhance the efficacy of standard anti-cancer regimens and should be explored, especially in recurrent prostate cancer.  相似文献   

18.
The antiapoptotic protein Bcl-2, overexpressed in many tumor cells, is an attractive target for potential small molecule anticancer drug discovery. Herein, we report a different structural modification approach on ABT-263 by merging the piperazinyl-phenyl fragment into a bicyclic framework leading to a series of novel analogues, among which tetrahydroisoquinoline 13 was nearly equally potent against Bcl-2 as ABT-263. Further SAR in the P4-interaction pocket affored the difluoroazetidine substituted analogue 55, which retained good Bcl-2 activity with improved Bcl-2/Bcl-xL selectivity.  相似文献   

19.
Bcl-2 family proteins protect against a variety of forms of cell death, including acute oxidative stress. Previous studies have shown that overexpression of the antiapoptotic protein Bcl-2 increases cellular redox capacity. Here we report that cell lines transfected with Bcl-2 paradoxically exhibit increased rates of mitochondrial H(2)O(2) generation. Using isolated mitochondria, we determined that increased H(2)O(2) release results from the oxidation of reduced nicotinamide adenine dinucleotide-linked substrates. Antiapoptotic Bcl-2 family proteins Bcl-xL and Mcl-1 also increase mitochondrial H(2)O(2) release when overexpressed. Chronic exposure of cells to low levels of the mitochondrial uncoupler carbonyl cyanide 4-(triflouromethoxy)phenylhydrazone reduced the rate of H(2)O(2) production by Bcl-xL overexpressing cells, resulting in a decreased ability to remove exogenous H(2)O(2) and enhanced cell death under conditions of acute oxidative stress. Our results indicate that chronic and mild elevations in H(2)O(2) release from Bcl-2, Bcl-xL, and Mcl-1 overexpressing mitochondria lead to enhanced cellular antioxidant defense and protection against death caused by acute oxidative stress.  相似文献   

20.
Naturally occurring organic sulfur compounds (OSCs), such as linear allylsulfides from Allium species, are attracting attention in cancer research, since several OSCs were shown to act beneficially both in chemoprevention and in chemotherapy, while hardly exerting any harmful side effects. Hence, we investigated the possible role of different OSCs in the treatment of leukemia. Thereby, we found that the compounds tested in this study induced apoptosis in U937 cells, with an efficiency depending on the number of sulfides, and selected the most promising candidate, diallyltetrasulfide (Al2S4), for detailed mechanistic studies. Here we show that Al2S4 induced an accumulation of cells in early mitosis (G2/M phase), followed by the activation of caspase-dependent apoptosis. The compound counteracted different anti-apoptotic Bcl-2 family members (Bcl-xL, phospho-Bad and Bcl-2), promoted activation of Bax and Bak and induced the release of cytochrome c into the cytoplasm. Treatment by Al2S4 let to the identification of early apoptotic events including Bcl-xL degradation, Bak activation and release of cytochrome c followed by late events including Bcl-2 proteolysis, Bax activation, Bad dephosphorylation, caspase activation, nuclear fragmentation and phosphatidylserine exposure. Claudia Cerella and Christiane Scherer, both authors equally contributed to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号