首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Grassland birds have declined more than any other North American habitat-associated bird community. Because most species of grassland birds evolved within heterogeneous landscapes created by the interaction of fire and grazing, traditional rangeland management that promotes homogeneity, including annual dormant-season burning combined with early-intensive grazing, might be partly responsible for these declines, especially in some regions of the Great Plains, USA. Recently, an alternative grassland management practice known as patch-burning has been promoted as a means of restoring heterogeneity to grasslands by mimicking the grazing-fire interaction that once occurred on the prairie before European settlement. From 2003 to 2004, we examined effects of patch-burning and traditional management (annual burning followed by early-intensive grazing) on the reproductive success of dickcissels (Spiza americana) in tallgrass prairie in Oklahoma. We monitored 296 dickcissel nests and found that dickcissel nesting phenology differed between traditional and patch-burned pastures. Specifically, dickcissels tended to initiate their nests later in the traditional pasture. Mean number of eggs laid and fledglings produced were similar between the treatments, but nest densities were higher in traditional pastures. Predation was the predominant cause of nest failure and was higher in traditional pastures than in patch-burned pastures. Brown-headed cowbird (Molothrus ater) parasitism was higher in traditional pastures than in patch-burned pastures. Overall, dickcissel nest success was higher in patch-burned pastures than in traditional pastures. The positive response of dickcissel nest success to patch-burn management provides further evidence that this practice can be a useful tool for grassland bird conservation. By creating a mosaic of different stature vegetation, patch-burn management enhances productivity of grassland bird species by providing a refuge area in the unburned patches that affords dickcissels and other nesting grassland birds some protection from the direct (e.g., trampling) and indirect (e.g., cowbird parasitism and predation) effects of grazing, which are not available under traditional management. Patch-burn management should be encouraged as a conservation strategy for grassland birds throughout the Great Plains.  相似文献   

2.
Aim Nestedness occurs when species present in depauperate sites are subsets of those found in species‐rich sites. The degree of congruence of site nestedness among different assemblages can inform commonalities of mechanisms structuring the assemblages. Well‐nested assemblages may still contain idiosyncratic species and sites that notably depart from the typical assemblage pattern. Idiosyncrasy can arise from multiple processes, including interspecific interactions and habitat preferences, which entail different consequences for species co‐occurrences. We investigate the influence of fine‐scale habitat variation on nestedness and idiosyncrasy patterns of beetle and bird assemblages. We examine community‐level and pairwise species co‐occurrence patterns, and highlight the potential influence of interspecific interactions for assemblage structure. Location Côte‐Nord region of Québec, Canada. Methods We sampled occurrences of ground‐dwelling beetles, flying beetles and birds at sites within old‐growth boreal forest. We examined the nestedness and idiosyncrasy of sites and sought relationships to habitat attributes. We analysed non‐random species co‐occurrence patterns at pairwise and community levels, using null model analysis and five ‘association’ indices. Results All three assemblages were significantly nested. There was limited congruence only between birds and flying beetles whose nestedness was related to canopy openness. For ground‐dwelling beetles, nestedness was related to high stand heterogeneity and sapling density, whereas site idiosyncrasy was inversely related to structural heterogeneity. For birds, site idiosyncrasy increased with canopy cover, and most idiosyncratic species were closed‐canopy specialists. In all assemblages, species idiosyncrasy was positively correlated with the frequency of negative pairwise associations. Species co‐occurrence patterns were non‐random, and for flying beetles and birds positive species pairwise associations dominated. Community‐level co‐occurrence summaries may not, however, always reflect these patterns. Main conclusions Nestedness patterns of different assemblages may not correlate, even when sampled at common locations, because of different responses to local habitat attributes. We found idiosyncrasy patterns indicating opposing habitat preferences, consistent with antagonistic interactions among species within assemblages. Analysis of such patterns can thus suggest the mechanisms generating assemblage structures, with implications for biodiversity conservation.  相似文献   

3.
Agricultural intensification in Europe has affected farmland bird populations negatively, both during summer and winter. Although the migratory period poses separate challenges on birds than breeding and wintering, the consequences of farming practices for birds during migration remain poorly investigated. We monitored abundance and species richness of migratory birds in autumn at matched pairs of organic and conventional farms situated either in intensively farmed open plains (homogeneous landscapes) or in small‐scale farming landscapes (heterogeneous landscapes) in southern Sweden. Total bird density did not differ between landscape types but was marginally higher on organic compared to conventional farms. When including taxonomic status in the model (passerines vs non‐passerines), we found significantly more birds on organic farms, and more non‐passerines in the homogeneous landscapes. The effect of farming practice and landscape type on density differed between functional groups. Omnivore density was higher in the homogeneous landscapes, and invertebrate feeders were marginally more abundant on organic farms. The effects of farming practice on the overall species richness and on the density of granivorous birds were landscape dependent. In the homogeneous landscapes, organic farms held a higher number of species and density of granivorous birds than conventional farms, but there was no such difference in the heterogeneous landscapes. Thus, organic farming can enhance abundance and species richness of farmland birds during migration, but the effect differs between landscape types and species. The effectiveness of organic farming was highest in the homogeneous landscape making it important to promote organic farming there. However, for some species during migration, increased heterogeneity in homogeneous landscapes may have negative effects. We propose that migratory bird diversity in homogeneous landscapes may be best preserved by keeping the landscape open, but that a reduced agricultural intensity, such as organic farming, should be encouraged.  相似文献   

4.
Overwintering is a key demographic stage for migratory birds but remains poorly understood, especially among multiple declining grassland bird species. The non-breeding ranges all 4 species of longspur (i.e., chestnut-collared [Calcarius ornatus], Smith's [C. pictus], Lapland [C. lapponicus], thick-billed [Rhynchophanes mccownii]) overlap in Oklahoma and the Texas Panhandle, USA, making this region ideal to study their wintering ecology. We evaluated the relationship between wintering longspur occurrence and fine-scale habitat characteristics using a combination of standardized bird surveys and vegetation plot sampling. Our study encompassed large, representative tracts of 3 prairie ecosystems (i.e., shortgrass, mixed-grass, and tallgrass prairies) that intersect within the Southern Great Plains, during winters of 2018–2019 and 2019–2020. Using randomization tests and classification trees, we characterized longspur habitats and compared these associations across the 3 prairie ecosystems. Fine-scale winter habitats (horizontal structure, vertical structure, and species compositions) varied among all 4 longspur species, varied at very fine scales, and differed between grassland types. Our findings can be applied to the management of grasslands such as decreasing vegetation height in mixed-grass prairies for chestnut-collared longspurs or removing woody vegetation in shortgrass prairies for thick-billed longspurs to help develop full-life cycle conservation for longspurs, which have experienced population declines.  相似文献   

5.
We used null models to examine patterns of species co‐occurrences in 59 communities of fleas parasitic on small mammals from 4 biogeographic realms (Afrotropics, Nearctic, Neotropics, and Palaearctic). We compared frequencies of co‐occurrences of flea species across host species with those expected by chance, using a null model approach. We used 4 tests for non‐randomness to identify pairs of species (within a community) that demonstrate significant positive or negative co‐occurrence. The majority of flea communities were non‐randomly assembled. Patterns of flea co‐occurrences on the same host species indicated aggregation but not segregation of flea species (except for the flea community of Madagascar). Although only a small fraction of species pairs were associated significantly (264 of 10, 943 species pairs according to the most liberal criterion), most of these associations were positive (except for 2 negatively associated species pairs). Significantly associated pairs were represented mainly by non‐congeneric species. The degree of non‐randomness of the entire flea community was similar among biogeographic regions, but the strength of pair‐wise association varied geographically, being the highest in the Afrotropics and the lowest in the European region of the Palaearctic.  相似文献   

6.
Positive or negative patterns of co‐occurrence might imply an influence of biotic interactions on community structure. However, species may co‐occur simply because of shared environmental responses. Here, we apply two complementary modelling methodologies – a probabilistic model of significant pairwise associations and a hierarchical multivariate probit regression model – to 1) attribute co‐occurrence patterns in 100 river bird communities to either shared environmental responses or to other ecological mechanisms such as interaction with heterospecifics, and 2) examine the strength of evidence for four alternative models of community structure. Species co‐occurred more often than would be expected by random community assembly and the species composition of bird communities was highly structured. Co‐occurrence patterns were primarily explained by shared environmental responses; species’ responses to the environmental variables were highly divergent, with both strong positive and negative environmental correlations occurring. We found limited evidence for behaviour‐driven assemblage patterns in bird communities at a large spatial scale, although statistically significant positive associations amongst some species suggested the operation of facilitative mechanisms such as heterospecific attraction. This lends support to an environmental filtering model of community assembly as being the principle mechanism shaping river bird community structure. Consequently, species interactions may be reduced to an ancillary role in some avifaunal communities, meaning if shared environmental responses are not quantified studies of co‐occurrence may overestimate the role of species interactions in shaping community structure.  相似文献   

7.
Sean O'Donnell 《Biotropica》2017,49(5):665-674
Mixed‐species assemblages can involve positive and negative interactions, but uncertainty about high‐value patchy resources can increase the value of information sharing among heterospecific co‐foragers. I sampled species composition of bird‐flocks attending army‐ant raids in three adjacent elevation zones in Costa Rica, across multiple years, to test for positive and negative associations among raid‐attending bird species. My goal was to test whether the most frequent and specialized raid‐attending species showed evidence of facilitating or excluding other bird species. I quantified elevational variation in avian community composition at raids, then asked whether species composition was associated with variation in flock characteristics (flock size and species richness). I identified the most frequent raid‐attending species (those that attended raids most frequently relative to their mist‐net capture rates), and bird species that performed specialized army ant‐following behavior (bivouac‐checking, which allows birds to memorize and track mobile army‐ant colonies). There was significant turnover of bird species among zones (including the frequent and specialized attendants); patterns of species overlap suggested a gradual transition from a Pacific‐slope to an Atlantic‐slope raid‐attending bird fauna. Raid‐attendance frequency was positively correlated with bivouac‐checking behavior. With few exceptions, the most frequent raid‐attending bird species, and the bivouac‐checking species, also participated in the most species‐rich flocks. High species‐gregariousness suggests many of the frequently attending and/or bivouac‐checking species functioned as core flock members. However, some bird species pairs were significantly negatively associated at raids. Despite species turnover, per‐flock numbers of birds at raids did not differ among geographic zones, but flocks on the Pacific‐slope were heavier because larger bodied bird species attended raids. Previous studies showed that the size (biomass) of bird‐flocks corresponds to the amount of food the birds kleptoparasitize from ant raids, and the heavier Pacific‐slope bird‐flocks could have greater negative kleptoparasitic impacts.  相似文献   

8.
A fundamental goal of ecology is to understand whether ecological communities are structured according to general assembly rules or are essentially dictated by random processes. In the context of fragmentation, understanding assembly patterns and their mechanistic basis also has important implications for conservation. Using distribution data of 20 bat species collected on 11 islands in Gatún Lake, Panama, we tested for non‐randomness in presence–absence matrices with respect to nestedness and negative species co‐occurrence. We examined the causal basis for the observed patterns and conducted separate analyses for the entire assemblage and for various species submatrices reflecting differences in species’ trophic position and mobility. Furthermore, we explored the influence of weighting factors (area, isolation, abundance) on co‐occurrence analyses. Unweighted analyses revealed a significant negative co‐occurrence pattern for the entire assemblage and for phytophagous bats alone. Weighting analyses by isolation retained a pattern of species segregation for the whole assemblage but nullified the non‐random structure for phytophagous bats and suggested negative associations for animalivores and species with low mobility. Area‐ and abundance‐weighted analyses always indicated random structuring. Bat distributions followed a nested subset structure across islands, regardless of whether all species or different submatrices were analysed. Nestedness was in all cases unrelated to island area but weakly correlated with island isolation for incidence matrices of all species, phytophagous bats, and mobile species. Overall, evidence for negative interspecific interactions indicative of competitive effects was weak, corroborating previous studies based on ecomorphological analyses. Our findings indicate that bat assemblages on our study islands are most strongly shaped by isolation effects and species’ differential movement and colonization ability. From a conservation viewpoint this suggests that even in systems with high fragment–matrix contrast, a purely area‐based approach may be inadequate, and structural and functional connectivity among patches are important to consider in reserve planning.  相似文献   

9.
Aim This paper uses null model analysis to explore the pattern of species co‐occurrence of terrestrial vertebrate fauna in fire‐prone, mixed evergreen oak woodlands. Location The Erico–Quercion ilicis of the Mediterranean belt (50–800 m a.s.l.) in the Madonie mountain range, a regional park in northern Sicily (37°50′ N, 14°05′ E), Italy. Methods The stratified sampling of vertebrates in a secondary succession of recent burned areas (BA, 1–2 years old), intermediate burned areas (INT, 4–10 years old) and ancient burned areas (CNB, > 50 years old), plus forest fragments left within burned areas (FF, 1–2 years old) permitted the comparison of patterns of species co‐occurrence using a set of separate presence/absence matrices. First, the breeding avifauna derived from standardized point counts was analysed using Stone & Roberts’C‐score, and by a null model algorithm (fixed/equiprobable). Secondly, the analysis was repeated using all vertebrate species recorded in the succession. Results Sixty‐five species were recorded in the 2‐year study period in the four sample treatments. Birds were found to make up the largest component (63%) of the recorded assemblage. The BA treatment had the lowest species richness, followed in order by the small, medium and large FFs, and then by the CNBs. For both analyses (birds and total vertebrates), the C‐scores were quite small and not significantly different from those that could be expected by chance in the BA and INT burned areas; this indicates a random co‐occurrence among vertebrates of those assemblages. Contrariwise, for both analyses in the CNBs, the C‐scores were large and significantly different from the simulated indices, thereby indicating a non‐random co‐occurrence pattern (segregation) of vertebrates in the undisturbed woodlands. In addition, C‐score values for the surviving FFs show a significant aggregation of species. Main conclusions The null model analyses highlighted a new aspect of fire disturbance in Mediterranean woodland ecosystems: the disruption in patterns of co‐occurrence in the terrestrial vertebrate community. Wildfire alters community organization, inducing, for at least 10 years, a random aggregate of species. Communities re‐assemble themselves, showing the occurrence of species segregation at least 50 years after fire.  相似文献   

10.
Invasion of riparian habitats by non‐native plants is a global problem that requires an understanding of community‐level responses by native plants and animals. In the Great Plains, resource managers have initiated efforts to control the eastward incursion of Tamarix as a non‐native bottomland plant (Tamarix ramosissima) along the Cimarron River in southwestern Kansas, United States. To understand how native avifauna interact with non‐native plants, we studied the effects of Tamarix removal on riparian bird communities. We compared avian site occupancy of three foraging guilds, abundance of four nesting guilds, and assessed community dynamics with dynamic, multiseason occupancy models across three replicated treatments. Community parameters were estimated for Tamarix‐dominated sites (untreated), Tamarix‐removal sites (treated), and reference sites with native cottonwood sites (Populus deltoides). Estimates of initial occupancy (ψ2006) for the ground‐to‐shrub foraging guild tended to be highest at Tamarix‐dominated sites, while initial occupancy of the upper‐canopy foraging and mid‐canopy foraging guilds were highest in the treated and reference sites, respectively. Estimates of relative abundance for four nesting guilds indicated that the reference habitat supported the highest relative abundance of birds overall, although the untreated habitat had higher abundance of shrub‐nesters than treated or reference habitats. Riparian sites where invasive Tamarix is dominant in the Great Plains can provide nesting habitat for some native bird species, with avian abundance and diversity that are comparable to remnant riparian sites with native vegetation. Moreover, presence of some native vegetation in Tamarix‐dominated and Tamarix‐removal sites may increase abundance of riparian birds such as cavity‐nesters. Overall, our study demonstrates that Tamarix may substitute for native flora in providing nesting habitat for riparian birds at the eastern edge of its North American range.  相似文献   

11.
The analysis of species co‐occurrence patterns continues to be a main pursuit of ecologists, primarily because the coexistence of species is fundamentally important in evaluating various theories, principles and concepts. Examples include community assembly, equilibrium versus non‐equilibrium organization of communities, resource partitioning and ecological character displacement, the local–regional species diversity relationship, and the metacommunity concept. Traditionally, co‐occurrence has been measured and tested at the level of an entire species presence–absence matrix wherein various algorithms are used to randomize matrices and produce statistical null distributions of metrics that quantify structure in the matrix. This approach implicitly recognizes a presence–absence matrix as having some real ecological identity (e.g. a set of species exhibiting nestedness among a set of islands) in addition to being a unit of statistical analysis. An emerging alternative is to test for non‐random co‐occurrence between paired species. The pairwise approach does not analyse matrix‐level structure and thus views a species pair as the fundamental unit of co‐occurrence. Inferring process from pattern is very difficult in analyses of co‐occurrence; however, the pairwise approach may make this task easier by simplifying the analysis and resulting inferences to associations between paired species.  相似文献   

12.
Aim This paper describes the development of novel indices of bird‐habitat preference to examine bird species’ use of habitats and their distributions relative to habitats. It assesses the implications for bird conservation regionally and the scope for biodiversity assessments generally. Location A 200 km by 400 km area of farmland with seminatural and urban areas, covering south‐eastern England. Methods Cluster analysis was used to link birds to landscapes. Cluster centroid coordinate values were processed to derive indices of bird‐habitat preference. Further developments assessed the relative values of individual habitats for birds. Results Clustering objectively linked birds to landscapes. Maps of the clusters showed strong regional patterns associated with distinctive habitat assemblages. Derived indices related bird species directly to individual habitats and habitats to birds. Even rare species and scarce habitats showed successful linkages, often to each other. Objective corroboration strongly supported the associations of coastal, wetland, urban and woodland birds and habitats; but, it suggested that farmland birds, whose numbers have nearly halved since 1977, may prefer alternative habitats. Main conclusions Land cover maps from remote sensing provide an effective way to link birds to habitats and vice versa. Thus, generalized habitat maps might be used to extrapolate localized or sample‐based bird observations or the results of autecological studies, helping to predict and understand bird distributions in the wider countryside. The weak links between farmland birds and farmland habitats in a region dominated by farming, suggests that reasons for the decline in farmland birds may be deep seated and thus hard to reverse. The procedures described are repeatable elsewhere and applicable more generally to evaluate landscapes and biodiversity. It is suggested that remote sensing could rarely be bettered as a means of assessing habitats, comprehensively, over wide areas, in most parts of the world.  相似文献   

13.
Negative species co‐occurrence patterns have long intrigued ecologists because of their potential link to competition. Although manipulative field experiments have consistently revealed evidence of competition in natural communities, there is little evidence that this competition produces negative co‐occurrence patterns. Evidence does suggest that abiotic variation, dispersal limitation and herbivory can contribute to patterns of negative co‐occurrence among species; it is possible these influences have obscured a link with competition. Here, we test for a connection between negative co‐occurrence and competition by examining a small‐scale, relatively homogeneous old‐field plant community where the influence of abiotic variation was likely to be minimal and we accounted for the impact of herbivory with an herbivore exclosure treatment. Using three years of data (two biennial periods), we tested whether negatively co‐occurring pairs of species, when occasionally found together, experienced asymmetric abundance decline more frequently than positively co‐occurring pairs, for which there is no such expectation. We found no evidence that negatively co‐occurring pairs consistently suffered asymmetric abundance decline more frequently than positively co‐occurring pairs, providing no evidence that competition is a primary driver of negative co‐occurrence patterns in this community. Our results were consistent across control and herbivore exclosure treatments, suggesting that herbivores are not driving patterns of negative species co‐occurrence in this community. Any influence of competition or herbivory on co‐occurrence patterns is small enough that it is obscured by other factors such as substrate heterogeneity, dispersal and differential species responses to climatic variation through time. We interpret our results as providing evidence that competition is not responsible for producing negative co‐occurrence patterns in our study community and suggest that this may be the case more broadly.  相似文献   

14.
Tallgrass prairies are among the most threatened ecosystems in the world. Remaining prairies tend to be small and isolated and many are associated with urban and suburban landscapes. We asked how urbanization might impact the conservation value of tallgrass prairie fragments for grassland birds by comparing the densities and the probability of occurrence of Dickcissels (Spiza americana), Grasshopper Sparrows (Ammodramus savannarum), and Eastern Meadowlarks (Sturnella magna) across 28 grasslands surrounded by low, moderate, and high levels of urbanization. We employed a hierarchical model selection approach to ask how variables that describe the vegetation structure, size and shape of grasslands, and urbanization category might explain variation in density and occurrence over two breeding seasons. Occurrence of all three species was explained by a combination of vegetation and patch characteristics, though each species was influenced by different variables and only Eastern Meadowlark occurrence was explained by urbanization. Abundance of all three species was negatively impacted by urbanization, though vegetation variables were also prevalent in the best‐supported models. We found no evidence that vegetation structure or other patch characteristics varied in a systematic way across urbanization categories. Although our results suggest that grassland bird density declines with urbanization, urban tallgrass prairies still retain conservation value for grassland birds because of the limited availability of tallgrass prairie habitat and the limited impact of urbanization on species occurrence.  相似文献   

15.
Aim The woodland ecosystems of south‐eastern Australia have been extensively disturbed by agriculture and urbanization. Herein, the occurrence of birds in woodland remnants in three distinct landscapes was analysed to examine the effects of different types of landscape matrices on species richness vs. area and species richness vs. isolation relationships and individual species responses to woodland fragmentation. Location The study system comprised three distinct woodland landscapes of the northern Australian Capital Territory and bordering areas of New South Wales. These landscapes (termed agricultural, peri‐urban and urban) are located within 50 km of each other, have remnant fragments of similar age, size, isolation, woodland cover, elevation and climates. The major distinguishing feature of the three landscapes was the properties of the habitats surrounding the numerous woodland remnants. Methods Bird surveys, using an area‐search methodology, were conducted in 1999 and 2000 in 127 remnants in the three landscapes to determine bird species presence/absence. Each remnant was characterized by measures of remnant area, isolation and habitat complexity. To characterize differences between each landscape, we conducted an analysis of the amount of tree cover and human disturbance in each landscape using SPOT imagery and aerial photographs. Linear regressions of woodland‐dependent species richness vs. remnant area and remnant isolation for the three different landscapes were calculated to see if there were any apparent differences. Binomial logistic regressions were used to determine the relationships between the occurrence of each species and the size and isolation of woodland habitat, in each landscape. Results All the landscapes displayed a significant (P < 0.01) species vs. area relationship, but the slope of the urban relationship was significantly greater than those of the other landscapes. In contrast, only the agricultural landscape displayed a significant (P < 0.01) species richness vs. isolation relationship. When individual species were investigated, we found species that were: (1) apparently insensitive to reduction in remnant area and increase in isolation across all landscapes, (2) absent in small remnants in all landscapes, (3) absent in small remnants in all landscapes and also absent in isolated remnants in the agricultural landscape, (4) absent in isolated remnants in the agricultural landscape, and (5) absent in small remnants in the urban landscape. Threshold values (50% probability of occurrence) for area and isolation for individual species were highly variable across the three landscapes. Main conclusions These results indicate that woodland bird communities have a varying response to habitat fragmentation in different landscapes. Whilst we cannot be sure how representative our chosen landscapes are of other similarly composed landscapes, these results suggest that the type of landscape matrix may have a considerable influence on how bird species are affected by woodland fragmentation in the region. For instance, the properties of a matrix may influence both the resources available in the landscape as a whole for different bird species, and the connectivity (dispersal of birds), between woodland remnants. We encourage further research that examines these hypotheses and argue that the management of the matrix should be included in conservation strategies for fragmented landscapes.  相似文献   

16.
A total of 134 bird species were recorded at Jianfengling, Hainan Island, in China from May 2000 to September 2004, of which 44 participated in one or more of 134 mixed‐species flocks. These flocks averaged 3.8 ± 0.2 species and 20.3 ± 1.2 individuals. Flocking propensity in a given species ranged from 1.5 to 100%. For flocking species, frequency of flocking and number of individuals in flocks was positively correlated with frequency and number in point counts. Among all species pairs with flocking frequency above 5%, cluster and correlation analysis indicated there were two principal groups of flocking birds – canopy species and understorey species: associations were positive within a group, but negative between groups. Canopy birds had a higher flocking propensity than understorey birds. They also made significantly less use of inner branches and trunks and greater use of middle branches, and foraged at a significantly greater height when in mixed‐species flocks than when solitary. For understorey bird species, there were no significant differences in foraging locations between solitary and mixed‐species flocks. Higher flocking frequency occurred in the wet season for canopy birds, but in the dry season for understorey birds. Overall patterns were consistent with the explanation that flocking enables an expansion of foraging niche by reducing the risk of predation.  相似文献   

17.
Aim Islands have often been used as model systems in community ecology. The incorporation of information on phylogenetic relatedness of species in studies of island assemblage structure is still uncommon, but could provide valuable insights into the processes of island community assembly. We propose six models of island community assembly that make different predictions about the associations between co‐occurrences of species pairs on islands, phylogenetic relatedness and ecological similarity. We then test these models using data on mammals of Southeast Asian islands. Location Two hundred and forty islands of the Sundaland region of Southeast Asia. Methods We quantified the co‐occurrence of species pairs on islands, and identified pairs that co‐occur more frequently (positive co‐occurrence) or less frequently (negative co‐occurrence) than expected under null models. We then examined the distributions of these significantly deviating pairs with respect to phylogenetic relatedness and ecological differentiation, and compared these patterns with those predicted by the six community assembly models. We used permutation regression to test whether co‐occurrence patterns are predicted by relatedness, body size difference or difference in diet quality. Separate co‐occurrence matrices were analysed in this way for seven mammal families and four smaller subsets of the islands of Sundaland. Results In many matrices, average numbers of negative co‐occurrences were higher than expected under null models. This is consistent with assemblage structuring by competition, but may also result from low geographic overlap of species pairs, which contributes to negative co‐occurrences at the archipelago‐wide level. Distributions of species pairs within plots of phylogenetic distance × ecological differentiation were consistent with competition, habitat filtering or within‐island speciation models, depending on the taxon. Regressions indicated that co‐occurrence was more likely among closely related species pairs within the Viverridae and Sciuridae, but in most matrices phylogenetic distance was unrelated to co‐occurrence. Main conclusions Simple deterministic models linking co‐occurrence with phylogeny and ecology are a useful framework for interpreting distributions and assemblage structure of island species. However, island assemblages in Sundaland have probably been shaped by a complex idiosyncratic set of interacting ecological and evolutionary processes, limiting the predictive power of such models.  相似文献   

18.
Abstract: We examined the role of mixed‐species flocks for forest birds during their breeding and non‐breeding seasons in the use of savannas adjacent to forests in central Cerrado, Brazil. Transect surveys (n = 64) were conducted in eight savanna patches. Distances of birds from forests were estimated. Recorded birds were classified as members or not of mixed‐species flocks. About half of the bird species recorded in savannas were found in at least one mixed‐species flock. As distance from the forest increased, the number of species in mixed‐species flocks tended not to vary, while the number of species foraging alone or in mono‐specific groups decreased. Thus, for some forest species, participation in mixed‐species flocks allowed a greater use of more distant savannas. This tendency of being in mixed‐species flocks at greater distances from forests also can be interpreted as a reluctance to forage alone or in mono‐specific groups due to higher predation risk in less protective vegetation distant from cover. There was strong seasonal variation in the participation of bird species in mixed‐species flocks. There were significantly more species in mixed‐species flocks than out of these associations in the non‐breeding season, while differences in the breeding season were not significant. These patterns occurred, in part because mixed‐species flocks tended to be more frequent, to have more species and to forage at greater distances from forests during the early non‐breeding season than in other periods. This study suggests that the formation of mixed‐species flocks plays an important role in promoting the use of adjacent savannas by forest birds at forest/savanna boundaries in Cerrado. It also pointed out a novel advantage gained by birds with participation in mixed‐species flocks – greater use of adjacent vegetation patches.  相似文献   

19.
Quantifying biotic responses to landscape transformation is a major research focus. Most past studies have explored co‐occurrence of entire communities of a given group (e.g. birds) within largely intact ecosystems or over a limited time‐frame. By contrast, here we use data from a 15 yr experimental study, to explore intra‐guild co‐occurrence of six closely‐related and functionally‐similar sets of birds within 55 woodland fragments. Areas surrounding these remnants are undergoing transformation from grazed paddocks to Pinus radiata plantations, leading to a novel assemblage of forest and woodland birds. We sought to determine if the occurrence of a given species in a guild influenced the occurrence of other closely‐related species in that guild, and through this relationship whether there was evidence of co‐occurrence between species. After controlling for environmental and habitat variables which can affect species occurrence like time since commencement of landscape transformation, patch size and vegetation type, we found the occurrence of a given species was influenced by the occurrence of a closely‐related species in the same guild. Co‐occurrence varied among bird guilds and included: 1) positive co‐occurrence in which occurrence of one species within fragments positively affected the occurrence of another closely‐related guild member (e.g. eastern and crimson rosellas); and 2) negative co‐occurrence in which the occurrence of one species was negatively associated with the occurrence of another within the same guild (e.g. willie wagtail and grey fantail). We also identified interactions between patch size and species recording frequency within members of two guilds. For example, modelling of conditional recording frequency revealed the eastern rosella increased with increasing recordings of the crimson rosella in large patches, but decreased with increasing recordings of the crimson rosella in small patches. Our results provide empirical evidence of co‐occurrence among guild members and underscore the complexity of biotic responses to landscape transformation.  相似文献   

20.
Patterns of species associations have been commonly used to infer interactions among species. If species positively co‐occur, they may form predominantly neutral assemblages, and such patterns suggest a relatively weak role for compensatory dynamics. The main objective of this study was to test this prediction on temporal samples of bird assemblages (n = 19, 10–57 years) by the presence/absence and quantitative null models on assemblage and guild levels. These null model outcomes were further analyzed to evaluate the effects of various data set characteristics on the outcomes of the null models. The analysis of two binary null models in combination with three association indices revealed 20% with significant aggregations, 61% with random associations, and only 19% with significant segregations (n = 95 simulations). The results of the quantitative null model simulations detected more none‐random associations: 61% aggregations, 6% random associations, and 33% segregations (n = 114 simulations). Similarly, quantitative analyses on guild levels showed 58% aggregations, 20% segregations, and 22% random associations (n = 450 simulations). Bayesian GLMs detected that the outcomes of the binary and quantitative null models applied to the assemblage analyses were significantly related to census plot size, whereas the outcomes of the quantitative analyses were also related to the mean population densities of species in the data matrices. In guild‐level analyses, only 9% of the GLMs showed a significant influence of matrix properties (plot size, matrix size, species richness, and mean species population densities) on the null model outcomes. The results did not show the prevalence of negative associations that would have supported compensatory dynamics. Instead, we assume that a similar response of the majority of species to climate‐driven and stochastic factors may be responsible for the revealed predominance of positive associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号