首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A serine proteinase (ycaB) from the yeast Candida albicans A.T.C.C. 10261 was purified to near homogeneity. The enzyme was almost indistinguishable from yeast proteinase B (EC 3.4.21.48), and an Mr of 30,000 for the proteinase was determined by SDS/polyacrylamide-gel electrophoresis. The initial site of hydrolysis of the oxidized B-chain of insulin, by the purified proteinase, was the Leu-Tyr peptide bond. The preferential degradation at this site, analysed further with N-blocked amino acid ester and amide substrates, demonstrated that the specificity of the proteinase is determined by an extended substrate-binding site, consisting of at least three subsites (S1, S2 and S'1). The best p-nitrophenyl ester substrates were benzyloxycarbonyl-Tyr p-nitrophenyl ester (kcat./Km 3,536,000 M-1 X S-1), benzyloxycarbonyl-Leu p-nitrophenyl ester (kcat./Km 2,250,000 M-1 X S-1) and benzyloxycarbonyl-Phe p-nitrophenyl ester (kcat./Km 1,000,000 M-1 X S-1) consistent with a preference for aliphatic or aromatic amino acids at subsite S1. The specificity for benzyloxycarbonyl-Tyr p-nitrophenyl ester probably reflects the binding of the p-nitrophenyl group in subsite S'1. The presence of S2 was demonstrated by comparison of the proteolytic coefficients (kcat./Km) for benzyloxycarbonyl-Ala p-nitrophenyl ester (825,000 M-1 X S-1) and t-butyloxycarbonyl-Ala p-nitrophenyl ester (333,000 M-1 X S-1). Cell-free extracts contain a heat-stable inhibitor of the proteinase.  相似文献   

2.
An extracellular thiol proteinase was produced by the growth of a thermophilic fungus, Humicola lanuginosa, on a medium containing 2% casein, and was purified to virtual homogeneity by affinity chromatography on organomercurial columns. The essential thiol group for activity was confirmed by the inhibition of the enzyme by p-chloromercuribenzoate and mercuric ions. The enzyme, purified 27-fold from the extracellular fluid, exhibited an Mr of 23700 on gel filtration and sedimentation equilibrium. The H. lanuginosa proteinase preferentially cleaves at the C-terminal end of hydrophobic amino acid residues. This proteinase differed from the plant enzyme papain in its interaction with three affinity matrices and its substrate specificity towards synthetic substrates. This enzyme represents a unique example of a thiol proteinase obtained from a fungal source.  相似文献   

3.
A novel enzyme, arylalkyl acylamidase, which shows a strict specificity for N-acetyl arylalkylamines, but not acetanilide derivatives, was purified from the culture broth of Pseudomonas putida Sc2. The purified enzyme appeared to be homogeneous, as judged by native and SDS/PAGE. The enzyme has a molecular mass of approximately 150 kDa and consists of four identical subunits. The purified enzyme catalyzed the hydrolysis of N-acetyl-2-phenylethylamine to 2-phenylethylamine and acetic acid at the rate of 6.25 mumol.min-1.mg-1 at 30 degrees C. It also catalyzed the hydrolysis of various N-acetyl arylalkylamines containing a benzene or indole ring, and acetic acid arylalkyl esters. The enzyme did not hydrolyze acetanilide, N-acetyl aliphatic amines, N-acetyl amino acids, N-acetyl amino sugars or acylthiocholine. The apparent Km for N-acetylbenzylamine, N-acetyl-2-phenylethylamine and N-acetyl-3-phenylpropylamine are 41 mM, 0.31 mM and 1.6 mM, respectively. The purified enzyme was sensitive to thiol reagents such as Ag2SO4, HgCl2 and p-chloromercuribenzoic acid, and its activity was enhanced by divalent metal ions such as Zn2+, Mg2+ and Mn2+.  相似文献   

4.
A thiol proteinase inhibitor was purified from rat liver by essentially the same procedure as reported previously (Kominami, E., Wakamatsu, N., and Katunuma, N. (1981) Biochem. Biophys. Res. Commun. 99, 568-575), but without heat treatment. The purified inhibitor appears homogeneous on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate and displayed no multiple forms. The inhibitor has Mr = 12,500 and contains 50.5% of polar amino acid residues, 9.3% aromatic amino acids, and no tryptophan. The presence of 2 half-cystines/molecule and the absence of free thiol groups indicate that the inhibitor possesses one disulfide bridges. The inhibitor inhibits cathepsin H by forming an enzyme-inhibitor complex in a molar ratio of 1:1. It inhibits most thiol proteinases such as cathepsin H, L, B, and C, papain, and ficin, but not calcium-activated neutral proteinase or serine proteinases or carboxyl proteinases. The inhibitor was found in various rat tissues. Immunological diffusion analysis with anti-liver thiol proteinase inhibitor serum indicated that the rat liver inhibitor is immunologically identical with the inhibitors from other rat tissues. On subcellular fractionation of rat liver, the thiol proteinase inhibitor was recovered in the cytosol fraction.  相似文献   

5.
Proteinase II, a high-molecular-mass proteinase previously identified in white croaker skeletal muscle, was purified to apparent homogeneity by DEAE-Sephacel, phenyl-Sepharose CL 4B, and Sephacryl S-300 chromatographies. Under denaturing conditions, the enzyme dissociated into a cluster of subunits with Mr ranging from 18,000 to 26,000 and a large subunit with a Mr 60,000. The proteinase was able to hydrolyze N-terminal-blocked 4-methyl-7-coumarylamide substrates having either an aromatic amino acid (chymotrypsin-like activity) or an arginine residue (trypsin-like activity) adjacent to the fluorogenic group. The trypsin-like activity of the enzyme was inhibited by fatty acids and sodium dodecyl sulfate, whereas the chymotrypsin-like activity was stimulated by those compounds but inhibited by nonionic and cationic detergents. Several thiol reagents inhibited both proteinase II activities. However, leupeptin and Cu2+ strongly inhibited its trypsin-like activity but only slightly affected its chymotrypsin-like activity. Dithiothreitol stimulated both activities, but at different extents and in different concentration ranges. These results suggest that the enzyme is multicatalytic, having at least two different active sites.  相似文献   

6.
A transamidinase was purified 463-fold from Lathyrus sativus seedlings by affinity chromatography on homoarginine--Sepharose. The enzyme exhibited a wide substrate specificity, and catalysed the reversible transfer of the amidino groups from donors such as arginine, homoarginine and canavanine to acceptors such as lysine, putrescine, agmatine, cadaverine and hydroxylamine. The enzyme could not be detected in the seeds, and attained the highest specific activity in the embryo axis on day 10 after seed germination. Its thiol nature was established by strong inhibition by several thiol blockers and thiol compounds in the presence of ferricyanide. In the absence of an exogenous acceptor, it exhibited weak hydrolytic activity towards arginine. It had apparent mol.wt. 210000, and exhibited Michaelis--Menten kinetics with Km 3.0 mM for arginine. Ornithine competitively inhibited the enzyme, with Ki 1.0 mM in the arginine--hydroxylamine amidino-transfer reaction. Conversion experiments with labelled compounds suggest that the enzyme is involved in homoarginine catabolism during the development of plant embryo to give rise to important amino acids and amine metabolites. Presumptive evidence is also provided for its involvement in the biosynthesis of the guanidino amino acid during seed development. The natural occurrence of arcain in L. sativus and mediation of its synthesis in vitro from agmatine by the transamidinase are demonstrated.  相似文献   

7.
Succinyltrialanine p-nitroanilide(STANA)-hydrolytic enzyme was purified 5,200-fold from porcine liver soluble fraction with a yield of 75% by ammonium sulfate fractionation and chromatographies on DEAE-Sephacel, Sephadex G-150, and hydroxylapatite columns. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate (SDS). The pI of the enzyme was 4.9 by dis gel electrofocusing and the molecular weight was calculated to be 72,000 by gel filtration on a Sephadex G-150 column and 74,000 by SDS-polyacrylamide gel electrophoresis. Acidic amino acids amounted to 17.2% of the total amino acid residues, and the basic ones, 12.9%. No hexosamine was detected. The STANA-hydrolytic enzyme showed maximal activity at pH 7.4 against succinyltrialanine p-nitroanilide and at pH 6.5 against succinyl-Gly-Pro-4-methylcoumaryl 7-amide (MCA), and was stable between pH 6 and 7 in the presence of dithiothreitol. This enzyme hydrolyzed succinyl-Gly-Pro-Leu-Gly-Pro-MCA, succinyl-Gly-Pro-MCA, succinyl-Ala-Pro-Ala-MCA, and several proline-containing natural peptides in addition to succinyltrialanine p-nitroanilide, but was unable to hydrolyze the substrates of aminopeptidases, dipeptidylaminopeptidase IV, trypsin, and chymotrypsin. Elastatinal and chymostatin were effective inhibitors and their IC50 values were 8.7 micrograms/ml and 18.2 micrograms/ml, respectively. The enzyme was completely inhibited by 10(-7) M p-chloromercuribenzoic acid (pCMB), 10(-7) M p-chloromercuriphenylsulfonic acid (pCMPS), and 10(-4) M diisopropyl phosphofluoridate (DFP), but not by 1 mM E-64, which is known as an inhibitor specific to thiol proteinase. The enzyme was easily inactivated by agitation in a Vortex mixer, and its activity was recovered by the addition of thiol compounds such as dithiothreitol, 2-mercaptoethanol and cysteine. The effects of inhibitors and thiol compounds were substantially identical when the enzyme activity was measured with either succinyltrialanine p-nitroanilide or succinyl-Gly-Pro-MCA as a substrate. These results indicate that the STANA-hydrolytic enzyme in the liver soluble fraction is a post-proline cleaving enzyme [EC 3.4.21.26].  相似文献   

8.
G C Kundu  I B Wilson 《Life sciences》1992,50(13):965-970
An enzyme partially purified from bovine lung membranes appears to be endothelin converting enzyme (ECE). This enzyme specifically cleaves big endothelin-1 (big ET-1) at the proper site, between Trp21 and Val22, with maximum activity at pH 7.5 and with a Km of roughly 3 microM, to produce endothelin-1 (ET-1) and C-terminal peptide (CTP). This same enzyme hydrolyzes the fluorogenic substrate succinyl-Ile-Ile-Trp-methylcoumarinamide to release the highly fluorescent 7-amino-4-methylcoumarin. The peptide derivative has the same amino acid sequence as big ET-1 and is a good substrate with a Km of about 27 microM. This enzyme is a metalloproteinase. It is not inhibited by five common proteinase inhibitors (pepstatin A, PMSF, NEM, E-64 and thiorphan) but it is inhibited by phosphoramidon and chelating compounds. The apoenzyme is restored to nearly full activity by a zinc-EDTA buffer with pZn = 13.  相似文献   

9.
Highly purified streptococcal nicotinamide adenine dinucleotide glycohydrolase (NADase) was obtained by utilizing disodium tetrathionate to protect the enzyme by blocking the sulfhydryl groups of streptococcal proteinase. This was followed by two-step ion-exchange chromatography. The pure enzyme, demonstrated as a single band on sodium dodecyl sulfate/polyacrylamide gel electrophoresis, had a specific activity of 11,200 NADase units per mg of protein and was devoid of hemolytic activity. NADase had a molecular weight of about 55,000 as determined by gel filtration, by summation of amino acid residues, and by sodium dodecyl sulfate/gel electrophoresis. The purified enzyme had optimal activity at pH 7.3 and at 40 C and a calculated Km of 5.1 times 10- minus 4 mM. It was inhibited by alpha-iodoacetamide.  相似文献   

10.
Cathepsin G was purified by single-step cation-exchange chromatography from rat polymorphonuclear leukocytes, obtained from the peritoneal cavity after induction of a mild peritonitis. The 26 N-terminal amino acids were determined and showed 73% identity to those of human cathepsin G. Total amino-acid composition demonstrated a high degree of basic amino acids in accordance with its high affinity for the cationic-exchange gel medium. The protein was found to be a glycoprotein with a glucosamine content of 7.4% of the calculated Mr28,900. On SDS/polyacrylamide-gel electrophoresis the protein showed a Mr of 28,400. It migrated as two bands in a gradient SDS/polyacrylamide-gel indicating isoforms. The pH optimum for the proteinase was determined to be 8.0-8.5 using Suc-Ala-Ala-Pro-Phe-Nan as substrate (Suc = 3-carboxypropionyl; Nan = 4-nitroanilide). Km and Kcat/Km values for Suc-Ala-Ala-Pro-Phe-Nan were 0.86mM and 280M-1S-1 and for Suc-Phe-Leu-Phe-Nan 0.24mM and 3600M-1S-1, respectively.  相似文献   

11.
A new cysteine proteinase was isolated from the digestive juice of the American lobster (Homarus americanus). The enzyme was purified by a combination of affinity and ion-exchange chromatography and gel filtration. The cysteine proteinase accounted for 80% of the proteolytic activity in the lumen of the hepatopancreas. The most potent heavy-metal inhibitors were Hg, Cu, and Ag ions. Inhibition by organic proteinase inhibitors, including E-64 [L-trans-epoxysuccinyl-leucylamido-(4-guanidino)butane] and activation of the enzyme by 2-mercaptoethanol and dithiothreitol are characteristic of cysteine proteinases. Several similarities to papain are noted and include the N-terminal sequence, of which 22 of the first 28 amino acids are identical. Some notable differences are the higher Mr of 28,000 compared with 23,350 for papain, and the low isoelectric point (pI 4.5) of the lobster enzyme. The effects of pH and temperature on catalytic activity of the lobster proteinase were studied with benzyloxycarbonylalanine p-nitrophenyl ester as the substrate. The kcat./Km value was effectively temperature-independent between 10 and 60 degrees C. The pH-activity profile for the lobster enzyme revealed four apparent protonation states, of which only two are active.  相似文献   

12.
Soybean (Glycine max (L.) Merr.) root nodules contain the enzymes of the ascorbate-glutathione cycle as an important defense against activated forms of oxygen. A key enzyme in this cycle--monodehydroascorbate reductase (MR)--was purified 646-fold and appeared as a single band on SDS-PAGE with silver or Coomassie blue staining. Purified MR contained 0.7 mol FAD/mol enzyme and had a specific activity of 288 mumol NADH oxidized.min-1.mg protein-1. The enzyme was a single subunit occurring as two isozymes (MR I and MR II) with Mr values of 39,000 and 40,000. Isoelectric focusing revealed that each isozyme consisted of two forms with pl values of 4.6 to 4.7. Ferricyanide and 2,6-dichlorophenol-indophenol were effective as electron acceptors. The purified enzyme did not possess leghemoglobin reductase activity. Inhibition by p-chloromercuribenzoate indicated the involvement of a thiol group in MR activity. The Km values were 5.6, 150, and 7 microM for NADH, NADPH, and monodehydroascorbate, respectively. The pH optimum was 8 to 9. The N-terminal sequence of 10 amino acids of MR II had little homology to known protein sequences.  相似文献   

13.
Monodehydroascorbate reductase (EC 1.6.5.4) was purified from cucumber fruit to a homogeneous state as judged by polyacrylamide gel electrophoresis. The cucumber monodehydroascorbate reductase was a monomer with a molecular weight of 47,000. It contained 1 mol of FAD/mol of enzyme which was reduced by NAD(P)H and reoxidized by monodehydroascorbate. The enzyme had an exposed thiol group whose blockage with thiol reagents inhibited the electron transfer from NAD(P)H to the enzyme FAD. Both NADH and NADPH served as electron donors with Km values of 4.6 and 23 microM, respectively, and Vmax of 200 mol of NADH and 150 mol of NADPH oxidized mol of enzyme-1 s-1. The Km for monodehydroascorbate was 1.4 microM. The amino acid composition of the enzyme is presented. In addition to monodehydroascorbate, the enzyme catalyzed the reduction of ferricyanide and 2,6-dichloroindophenol but showed little reactivity with calf liver cytochrome b5 and horse heart cytochrome c. The kinetic data suggested a ping-pong mechanism for the monodehydroascorbate reductase-catalyzed reaction. Cucumber monodehydroascorbate reductase occurs in soluble form and can be distinguished from NADPH dehydrogenase, NADH dehydrogenase, DT diaphorase, microsome-bound NADH-cytochrome b5 reductase, and NADPH-cytochrome c reductase by its molecular weight, amino acid composition, and specificity of electron acceptors and donors.  相似文献   

14.
A cell envelope 57-kDa proteinase, a cytoplasmic 65-kDa dipeptidase, and a 75-kDa aminopeptidase were purified from Lactobacillus sanfrancisco CB1 sourdough lactic acid bacterium by sequential fast protein liquid chromatography steps. All of the enzymes are monomers. The proteinase was most active at pH 7.0 and 40 degrees C, while aminopeptidase and dipeptidase had optima at pH 7.5 and 30 to 35 degrees C. Relatively high activities were observed at the pH and temperature of the sourdough fermentation. The proteinase is a serine enzyme. Urea-polyacrylamide gel electrophoresis of digest of alpha s1- and beta-caseins showed differences in the pattern of peptides released by the purified proteinase and those produced by crude preparations of the cell envelope proteinases of Lactobacillus delbrueckii subsp. bulgaricus B397 and Lactococcus lactis subsp. lactis SK11. Reversed-phase fast protein liquid chromatography of gliadin digests showed a more-complex peptide pattern produced by the proteinase of Lactobacillus sanfrancisco CB1. The dipeptidase is a metalloenzyme with high affinity for dipeptides containing hydrophobic amino acids but had no activity on tripeptides or larger peptides. The aminopeptidase was also inhibited by metal-chelating agents, and showed a broad N-terminal hydrolytic activity including di- and tripeptides. Km values of 0.70 and 0.44 mM were determined for the dipeptidase on Leu-Leu and the aminopeptidase on Leu-p-nitroanilide, respectively.  相似文献   

15.
N-Carbamoylsarcosine amidohydrolase, a novel enzyme involved in the microbial degradation of creatinine in Pseudomonas putida 77, was purified 27-fold to homogeneity with a 63% overall recovery through simple purification procedures including successive ammonium sulfate fractionation, DEAE-cellulose chromatography, and crystallization. The relative molecular mass of the native enzyme estimated by the ultracentrifugal equilibrium method is 102,000 +/- 5000, and the subunit Mr is 27,000. The Km and Vm values for N-carbamoylsarcosine are 3.2 mM and 1.75 units/mg protein, respectively. Ammonia, carbon dioxide, and sarcosine were formed stoichiometrically from N-carbamoylsarcosine through the action of the purified enzyme preparation. N-Carbamoyl amino acids with a methyl group or hydrogen atom on the amino-N atom and possessing glycine, D-alanine, or one of their derivatives as an amino acid moiety served well as substrates for N-carbamoylsarcosine amidohydrolase. N-Carbamoylsarcosine, N-methyl-N-carbamoyl-D-alanine, N-carbamoylglycine, and N-carbamoyl-D-alanine were hydrolyzed at relative rates of 100, 12.8, 9.8, and 7.3, respectively, by the enzyme. N-Carbamoyl derivatives of D-tryptophan, D-phenylalanine, and those of some other amino acids including D-phenylglycine and p-hydroxy-D-phenylglycine were also hydrolyzed by the enzyme. For the L-isomers of all N-carbamoyl amino acids tested there was no production of ammonia, carbon dioxide, or the corresponding amino acids due to the action of the enzyme. Cupric, mercuric, and silver ions inhibited the enzyme strongly, and some thiol reagents were also found to be inhibitory.  相似文献   

16.
An intracellular aspartic proteinase obtained from the hepatopancreas (liver) of Japanese common squid (Todarodes pacificus) was purified to homogeneity. The molecular mass of the enzyme was 36,500 Da on SDS-PAGE, and the isoelectric point was 8.29 by isoelectric focusing. The enzyme activity was optimal at pH 3.5, pH 2.2 and pH 3.0 for the substrates acid-denatured hemoglobin, acid-denatured casein, and MOCAc-GKPILFFRLK(Dnp)-D-R-NH2, respectively. Enzyme activity decreased rapidly at 50 degrees C. The Km and kcat values of the enzyme were estimated to be 3.2 mM and 46 s(-1) with MOCAc-GKPILFFRLK(Dnp)-D-R-NH2, and 1.7 mM and 1.1 s(-1) with MOCAc-SEVNLDAEFRK(Dnp)RR-NH2. The enzyme activity was strongly inhibited by pepstatin A, but only partially inhibited by DAN and EPNP. The Ki values for pepstatin A, DAN and EPNP were 0.5 nM, 0.5 mM and 0.2 mM, respectively. A cDNA encoding the enzyme was cloned by RT-PCR and subjected to nucleotide sequencing. The entire open reading frame was 1179 bp and coded for a protein of 392 amino acid residues. The mature enzyme consisted of 334 amino acids. The deduced amino acid sequence of the enzyme showed a high degree of identity to the sequences of cathepsins D found in various species.  相似文献   

17.
Ingensin, a fatty acid-activated serine proteinase from rat liver cytosol   总被引:2,自引:0,他引:2  
The enzyme responsible for the succinylleucylleucylvalyltyrosine methylcoumarylamide- (SLLVT-) degrading activity was purified from the postmitochondrial supernatant of rat liver (Yamamoto, T., Nojima, M., Ishiura, S. and Sugita, H. (1986) Biochim. Biophys. Acta 882, 297-304). The enzyme, named ingensin, was activated by saturated fatty acids, especially myristic acid, as well as by unsaturated linoleic acid and arachidonic acid. Although 2-mercaptoethanol activated ingensin 2-fold and p-chloromercuribenzoate and HgCl2 completely inhibited its peptide-hydrolyzing activity, the enzyme is activated by the addition of a thiol-blocking reagent, monoiodoacetic acid. Ingensin was also inhibited by a specific serine proteinase inhibitor, diisopropyl fluorophosphate, but not by a specific cysteine proteinase inhibitor, E-64-c. These results suggest that the enzyme is a serine proteinase with an active thiol group(s) near the active site. We have found that the addition of glycerol and nordihydroguaiaretic acid lowered the extent of its activation by fatty acids as well as its intrinsic peptide-hydrolyzing activity.  相似文献   

18.
绮丽刺毛霉的一种新型甘氨酸氨肽酶的研究   总被引:4,自引:0,他引:4  
研究了产自于绮丽刺毛霉(Actinomucor elegans)的一种甘氨酸氨肽酶。分子筛层析表明该酶的天然分子的分子量为320kD,SDSPAGE分析表明蛋白质的亚基分子量为565kD。该酶水解含有甘氨酸残基的底物(如glycinenaphthylamine)的效率要较其它氨基酸残基高得多。该酶的最佳反应温度为30℃,最佳pH为8.0。酶的Km和Kcat值分别为0.24mmol/L与1008 s-1。1.0mmol/L Zn2+,Cu2+和Cd2+可完全抑制该酶的活性。作用于酶巯基的化学物质对酶活性都有抑制作用。根据络合剂反应的实验结果表明该酶是一种含有金属的酶。当与蛋白酶共同作用时该酶除了甘氨酸外还能提高脯氨酸、精氨酸及谷氨酸的水解率。  相似文献   

19.
The extracellular proteinase produced by a depressed strain of Serratia marcescens ATCC 25419 was purified and characterized. This produces more than 10-times the amount of extracellular proteinase produced by other strains of Serratia tested. The purified enzyme was prepared from the culture supernatant by (NH4)2SO4 fractionation and DEAE-cellulose chromatography. The purified enzyme has an so20,w of 3.95 and is a monomer of molecular weight 51,900. The proteinase has a broad pH optimum in the alkaline range with a maximum at pH 9.5. The enzyme will utilize a number of proteins as substrate. The products of digestion are primarily in the size range of tripeptides to hexapeptides. Peptides containing a sensitive bond and a minimum size of size amino acids are hydrolyzed. The proteinase is inhibited by chelating agents but unaffected by sulfhydryl or serine reagents and is devoid of esterase activity.  相似文献   

20.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38-39 kDa, as judged by SDS-PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5+/-4.5 microM and uronic acids, such as D-galacturonic acid (Km=3.79+/-0.5 mM) and D-glucuronic acid (Km=4.67+/-0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP(+). The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H(2)O(2), suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号