首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the heart basic rhythm, its rhythmical variations on periodograms, and level of spontaneous motor activity were studied on offspring of white rats from newborn to 3-week age at transition from the state of active wakefulness to narcosis as well as under conditions of blockade of M-cholinoreceptors with atropine. It is shown that the endogenous rhythmical activity can be regulated not only by a change in frequency of basic rhythms, but also by action on all parameters and properties of their rhythmical variations and secondary rhythms. The changes in power of the heart secondary rhythms exceed considerably the frequency oscillations of basic rhythms during blockade of cholinergic innervation or a change in the motor activity level that affects both the basic rhythm circulation and respiration and their variations—secondary rhythms. The atropine blockade of M-cholinoreceptors at the studied ages changes the heart contraction rhythm within the limits of 10% of bradycardia in newborns to tachycardia in the 3-week old animals. At the same time, power of the cardiac rhythm secondary oscillations changes several times. These data indicate that the cholinergic mechanisms play the key role in formation of the secondary rhythms and their correlation with motor activity.  相似文献   

2.
Changes in the heart basic rhythm, its rhythmical variations on periodograms, and level of spontaneos motor activity were studied on offspring of white rats from newborn to 3-week age at transition from the state of active wakefulness to narcosis as well as under conditions of blockade of M-cholinoreceptors with atropine. It is shown that the endogenous rhythmical activity can be regulated not only by a change in frequency of basic rhythms, but also by action on all parameters and properties of their rhythmical variations and secondary rhythms. The changes in power of the heart secondary rhythms exceed considerably the frequency oscillations of basic rhythms during blockade of cholinergic innervation or a change in the motor activity level that affects both the basic rhythm circulation and respiration and their variations--secondary rhythms. The atropine blockade of M-cholinoreceptors at the studied ages changes the heart beating rhythm within the limits of 10% of bradicardia in newborns to tachycardia in the 3-week old animals. At the same time, power of the cardiac rhythm secondary oscillations changes several times. These data indicate that the cholinergic mechanisms play the key role in formation of the secondary rhythms and their correlation with motor activity.  相似文献   

3.
Endogenous periodic oscillations of the heart beat rate are described in rat pups aged 3–4, 7–8, 10–11, 13–14, 21–22 days and 1.5 month after birth. These oscillations have all characteristic features established earlier for the secondary rhythms of endogenous contractile activity in the wall of various regions of the gastrointestinal tract and for bursts of spontaneous somatomotor excitation in the early postnatal ontogeny of rats: a multi-stage organization, inconstancy, irregularity of components. In frequency spectra of secondary oscillations of the heart rate obtained by means of fast Fourier transform of R–R intervals of the periodogram, age-related changes of the spectral frequency power are demonstrated in 4 ranges, 0.01–0.03, 0.03–0.1, 0.1–1.0, and 1.0–2.5 Hz, which correspond to the about-one-minute, decasecond, and about-one-second waves of the heart rhythm oscillations and to sinus arrhythmia. It is shown that the dominating frequencies of the secondary rhythms in each range do not have regular age-related changes, which is characteristic of all endogenous secondary rhythms.  相似文献   

4.
In wakeful rats at the age from newborn to 3 weeks there were studied interrelations of rhythmical oscillations of heart rate, respiration rate, and periodic spontaneous motor activity. In all studied systems, these oscillations are coordinated and occur in several frequency diapasons. Frequencies in the near-minute diapason (the period from 30 to 90 s) are the most constant and do not change with age. Regular oscillations are the most stable in newborns. Bursts of motor activity usually are irregular, but episodically the distinct near-minute rhythm is traced. Studies of the character of interaction of the heart activity, respiration, and periodic somatomotor excitation allow stating that the main coordination pathway of spontaneous autorhythmic functions in early postnatal ontogenesis is formation of secondary rhythms. Possible ways of formation of the secondary rhythms are considered.  相似文献   

5.
In the autorhythmical activity underlying many visceral and in early ontogenesis also somatomotor systems, three kinds of rhythms are to be distinguished: basic, reflecting activity of individual organs and of systems of organs, the secondary ones representing result of the frequency and amplitude modulation of the basic rhythms, and the rhythmical periodic activity whose distinguishing feature is alternation of the activity and rest phases. Each kind has principally different frequency characteristics, different organization and localization of sources. The frequency of basic rhythms is determined by the generator inserted into the system. It serves an individual characteristics of the current state of function of the organ, the degree of maturity of its motor apparatus. The secondary rhythm and the rhythm of the periodic activity cycles are provided by oscillatory processes common to the whole organism. Universality of these rhythms promotes integration of functions.  相似文献   

6.
The work presents a short review of concepts of origin and representation of ancient (primary) endogenous rhythms whose period is in the near-second-near minute ranges. These rhythms are the basis for the appearance of the viscero-and somatomotor excitation in various functional systems of vertebrate and invertebrate animals. Based on literature data and the own studies, there has been considered a hypothesis of universality of mechanisms of generation of endogenous rhythms of a certain frequency range regardless of their localization. The recently performed new experimental works have confirmed and enlarged A.V. Voino-Yasenetskiis’s viewpoints suggested in the 1950–1980s. It has been shown that under effect of certain extreme or pathological factors, in excitable structures, functional dissolution of coordinational mechanisms can be observed; it is accompanied by a change of the activity pattern and reproduction in it of the ancient excitation rhythms absent in the normal state. The appeared atypical rhythmicity is similar with pathological activity described in clinical medicine. Development of further studies of mechanisms of reproduction of primary rhythms might be not only of fundamental, but also of certain practical interest.  相似文献   

7.
Juri Lotman distinguishes between two main types of communication. In addition to the classical I-YOU communication, he speaks about I-I communication, where both the addresser and the addressee are one and the same person. Contrary to how it sounds, autocommunication is not self-sufficient musing inside one’s self, it is remodelling oneself through a code from an entity outside oneself, be it animate or inanimate. According to Lotman, it is often the rhythmical phenomena like poetry, the rhythm of waves, etc. that lend themselves for the act of autocommunication as external codes. After having received the message one is not identical to the original oneself anymore. Perceptual markers of landscape—specific rhythms, ephemera, the rhythm of human everyday activities, bodily movement—can be considered as a secondary code leading to autocommunication in the person who contemplates the landscape. Looking at the landscape—which also implies the rhythmical movement of the eyes—one uses it as a code to reconstitute oneself. A person who has confronted a landscape does not leave it as the same person. The present article poses a definition of autocommunication in landscapes and discusses the way in which other sensorial information apart from the visual—smell, movement, rhythms etc—are used culturally to reinforce autocommunication with oneself. It can be said that several institutionalised religious and cultural practices expect the subject to reconstitute him- or herself mainly through the bodily landscape experience.  相似文献   

8.
Practically all organism's visceral organs and systems performing contractile function as well as the somatomotor apparatus of higher animals, regardless of the type of muscles and character of control of their activity, start their work at early stages of ontogenesis with autorhythmic contractions. This activity is endogenous, as it does not have any external rhythmic analogs. Two fundamentally different components can be distinguished in the endogenous rhythm: the basic ones, specific of each system, and the secondary ones, built over the basic rhythms that reflect oscillatory processes in the whole organism and serve the basis for integration of endogenous periodic processes. Formation and synchronization of the secondary rhythms is the earliest stage of coordination of the automatically working systems. The broadening of possibilities for regulation and age-dependent inhibition of the autorhythm provide a transition to reflex-determined forms of activity. In various contractile systems, stages of evolution of neuromuscular relationships, from the independent autorhythm to the voluntary control of contractions, find their reflection.  相似文献   

9.
Over recent decades, changes in zebrafish (Danio rerio) behaviour have become popular quantitative indicators in biomedical studies. The circadian rhythms of behavioural processes in zebrafish are known to enable effective utilization of energy and resources, therefore attracting interest in zebrafish as a research model. This review covers a variety of circadian behaviours in this species, including diurnal rhythms of spawning, feeding, locomotor activity, shoaling, light/dark preference, and vertical position preference. Changes in circadian activity during zebrafish ontogeny are reviewed, including ageing-related alterations and chemically induced variations in rhythmicity patterns. Both exogenous and endogenous sources of inter-individual variability in zebrafish circadian behaviour are detailed. Additionally, we focus on different environmental factors with the potential to entrain circadian processes in zebrafish. This review describes two principal ways whereby diurnal behavioural rhythms can be entrained: (i) modulation of organismal physiological state, which can have masking or enhancing effects on behavioural endpoints related to endogenous circadian rhythms, and (ii) modulation of period and amplitude of the endogenous circadian rhythm due to competitive relationships between the primary and secondary zeitgebers. In addition, different peripheral oscillators in zebrafish can be entrained by diverse zeitgebers. This complicated orchestra of divergent influences may cause variability in zebrafish circadian behaviours, which should be given attention when planning behavioural studies.  相似文献   

10.
A role for circadian neuroendocrine rhythms in the age-related development of obesity and insulin resistance was investigated in the male Sprague-Dawley rat. The phases and amplitudes of the plasma rhythms of several metabolic hormones (i.e. corticosterone, prolactin, insulin, and triiodothyronine) differed in lean, insulin-sensitive (3-week-old rats). insulin-resistant (8-week-old rats) and obese, insulin-resistant (44-week-old rats) animals. Simulation of the daily rhythms of endogenous corticosterone and prolactin by daily injections of the hormones at times corresponding to the peak levels found in 3-week-old rats reversed age-related increases in insulin resistance and body fat in older (5-6-month-old) rats. Ten such daily injections of corticosterone and prolactin in 12-14-week-old rats produced long-term reductions in body fat stores (30%). plasma insulin concentration (40%'). and insulin resistance (60%) (determined by a glucose tolerance test) measured 11-14 weeks after the treatment. Alterations in circadian neuroendocrine rhythms may account for age-related changes in carbohydrate and lipid metabolism in the male Sprague-Dawley rat, and resetting of these rhythms by appropriately timed daily injections of corticosterone and prolactin may help maintain metabolism characteristic of younger animals.  相似文献   

11.
A role for circadian neuroendocrine rhythms in the age-related development of obesity and insulin resistance was investigated in the male Sprague-Dawley rat. The phases and amplitudes of the plasma rhythms of several metabolic hormones (i.e. corticosterone, prolactin, insulin, and triiodothyronine) differed in lean, insulin-sensitive (3-week-old rats). insulin-resistant (8-week-old rats) and obese, insulin-resistant (44-week-old rats) animals. Simulation of the daily rhythms of endogenous corticosterone and prolactin by daily injections of the hormones at times corresponding to the peak levels found in 3-week-old rats reversed age-related increases in insulin resistance and body fat in older (5-6-month-old) rats. Ten such daily injections of corticosterone and prolactin in 12-14-week-old rats produced long-term reductions in body fat stores (30%). plasma insulin concentration (40%″). and insulin resistance (60%) (determined by a glucose tolerance test) measured 11-14 weeks after the treatment. Alterations in circadian neuroendocrine rhythms may account for age-related changes in carbohydrate and lipid metabolism in the male Sprague-Dawley rat, and resetting of these rhythms by appropriately timed daily injections of corticosterone and prolactin may help maintain metabolism characteristic of younger animals.  相似文献   

12.
Entrainment to external rhythms was analyzed in atypical RPA-1 neurons of Helix pomatia L. stimulated orthodromically. Neurons with long-lasting bursts were tested only with supraharmonic frequencies. All cycle-stimulus relations described for typical oscillators did occur, with particularities due to the frequency of stimulation and the strong fluctuations of cycle parameters. Activity in pairs or triplets was refractory to entrainment. Instead, rhythmical pulses may transform the bimodal activity into a monomodal one. Continuously active neurons and silent ones were also tested. Fragmentation into bursts and long-period bimodal activity could be evoked respectively, suggesting the presence of a latent bimodal pacemaker behind these activities.  相似文献   

13.
During the past decade, spectral analysis has become indispensable instrument for different kinds of EEG processing. With the development of dedicated computer system, investigation of shifts in human EEG rhythm under various conditions has improved considerably. However, it is difficult to make general conclusions from this line of research, since a large number of studies are carried out using the ambiguous experimental approaches and different methods. Present paper aims to evaluate a modern state of the art in the field of human EEG rhythmical structure investigation. The results from recent relevant articles are briefly reviewed according to the universal scheme (EEG rhythm--experimental condition--observed effect). Due to such presentation, the obtained results have been summarized and some tendencies of modern investigations have been revealed. The extension of studied frequency range of rhythmical EEG components to both high (> 35 Hz) and low (< 1 Hz) frequencies, the shift to a more detailed spectral structure analysis simultaneously with ignoring the fixed boundaries of traditional EEG rhythms, the growing attempts to reveal EEG rhythmical structure correlates of cognitive activity, and a wide utilization of dynamic approaches for the analysis of brain electrical activity are discussed in some detail. The observed data are indicate of high functional significance and perspectives of human EEG rhythmical structure investigation.  相似文献   

14.
Rhythmical contractile activity of amnion accompanies development of reptiles and birds in the course of a large part of embryogenesis. These rhythmical contractions are myogenic and spontaneous. The strength, frequency, and character of the amnion contractions change in embryogenesis in a regular way. This type of rhythmical activity is sensitive to many neurotransmitters and external factors. Features of similarity and difference of the amnion rhythmical contractile activity in the reptile and bird embryogenesis are considered. There are discussed a possible functional significance of this rhythmical activity and its participation in response of embryo to external actions, such as temperature fluctuations and acute hypoxia.  相似文献   

15.
Heart rate and arterial haemolymph flow rates were measured in freshly trapped Dungeness crabs, Cancer magister, using a pulsed-Doppler flowmeter. In the laboratory, freshly collected subtidal crabs exhibited endogenous rhythms in both cardiac function and haemolymph flow through one or more arterial systems, of both tidal and diurnal periodicity. The strongest tidal rhythms were recorded in the sternal and paired anterolateral arteries. These endogenous rhythms of selective tissue perfusion are related to an underlying locomotor activity, but may also be involved with hormonal transport or feeding. Changes in both heart rate and stroke volume were responsible for the increases in haemolymph flow rates. These rhythms were not entrained by aerial exposure, since confinement of arhythmic crabs in intertidal cages did not re-entrain an endogenous tidal rhythm. Endogenous locomotory rhythms are known to be controlled by neurohormones released in cycles from the sinus gland on the eyestalk. These hormones may also control the endogenous cardiovascular rhythms, since these were abolished after eyestalk ablation in freshly collected Cancer magister. These results suggest that hormones synthesized and released by the X-organ/sinus gland complex may, together with pericardial hormones, play a role in modulation of crustacean cardiovascular function.  相似文献   

16.
This review will discuss the relationship between energy metabolism, protein dysfunction and the causation and modulation of age-related proteotoxicity and disease. It is proposed that excessive glycolysis, rather than aerobic (mitochondrial) activity, could be causal to proteotoxic stress and age-related pathology, due to the generation of endogenous glycating metabolites: the deleterious role of methylglyoxal (MG) is emphasized. It is suggested that TOR inhibition, exercise, fasting and increased mitochondrial activity suppress formation of MG (and other deleterious low molecular weight carbonyl compounds) which could control onset and progression of proteostatic dysfunction. Possible mechanisms by which the endogenous dipeptide, carnosine, which, by way of its putative aldehyde-scavenging activity, may control age-related proteotoxicity, cellular dysfunction and pathology, including cancer, are also considered. Whether carnosine could be regarded as a rapamycin mimic is briefly discussed.  相似文献   

17.
While many intertidal animals exhibit circatidal rhythms, the nature of the underlying endogenous clocks that control these rhythms has been controversial. In this study American horseshoe crabs, Limulus polyphemus, were used to test the circalunidian hypothesis by exposing them to four different tidal regimes. Overall, the results obtained support the circalunidian hypothesis: each of the twice-daily rhythms of activity appears to be controlled by a separate clock, each with an endogenous period of approximately 24.8 h. First, spontaneous “skipping” of one of the daily bouts was observed under several different conditions. Second, the presence of two bouts of activity/day, with different periods, was observed. Lastly, we were able to separately synchronize bouts of activity to two artificial tidal regimes with different periods. These results, taken together, argue in favor of two separate circalunidian clocks in Limulus, each of which controls one of the two bouts of their daily tidal activity rhythms.  相似文献   

18.
Synopsis Freerunning circadian rhythms of locomotor activity in individual longnose dace sampled from a population at 41°N latitude were recorded under constant darkness throughout the year. There was an annual cycle in the length of the circadian period, with maximum and minimum lengths of mean period of 23.6 and 21.6 h recorded during summer (June) and winter (December), respectively. These annual changes in period length may have resulted from seasonal changes in entrainment by natural light-dark cycles and their after-effects on endogenous circadian rhythms. The possibility of an endogenous circannual rhythm was also considered.  相似文献   

19.
All living organisms exhibit rhythmic activities in a wide variety of endocrine and behavioural parameters. These biological rhythms are endogenously generated by a circadian clock, and they are entrained by cyclic variations of environmental factors called synchronizers. Aging is associated with changes in amplitude and temporal organization of many daily and seasonal rhythms. In humans, daily rhythms of sleep, thermoregulation and hormonal secretion are severely altered with aging. Except in humans, studies on primates are scarce. However, age-related effects on biological rhythms are relatively consistent among primate species studied to date, including humans. Therefore, non human primates are of valuable use for such investigations. Most studies have been performed on the Rhesus macaque (longevity 35-40 years) and on the gray mouse lemur (longevity 10-12 years). Like in humans, the rest-activity rhythm becomes fragmented in aged primates, and shows an increased activity during the resting period. Aging induces a decrease in amplitude of the body temperature rhythm and an increase in energy consumption. Various hormonal secretions exhibit a decrease with aging, but the rhythmic components of these declines have not always been depicted. Moreover, changes (amplitude or phase) in daily variations depended of the hormonal secretion tested. Taken together, these results suggest that the biological clock in the brain would be a primary target of aging. The main central clock is located in the suprachiasmatic nucleus of the hypothalamus whose endogenous oscillations are entrained by light. In this brain structure, cellular function and sensitivity to light show drastic changes with age in the mouse lemur. The precise knowledge of age-related alterations of biological rhythms in primates can have important consequences on the development of new treatments to maintain or restore biological rhythmicity in the elderly.  相似文献   

20.
On newborn rat pups, for the first day after birth, there was studied the character of mutual influences between the slow-wave rhythmical components of the cardiac, respiratory, and motor activities reflecting interactions between the main functional systems of the developing organism. The study was carried out in norm and after pharmacological depression of the spontaneous periodical motor activity (SPMA) performed by narcotization of rat pups with urethane at low (0.5 g/kg, i/p) and maximal (1 g/kg, i/p) doses. Based on the complex of our obtained data, it is possible to conclude that after birth in rat pups the inter-systemic interactions are realized mainly by the slow-wave oscillations of the near- and manyminute diapason. The correlational interactions mediated by rhythms of the decasecond diapason do not play essential role in integrative processes. Injection to the animals of urethane producing selective suppression of reaction of consciousness, but not affecting activating influences of reticular formation on cerebral cortex does not cause marked changes of autonomous parameters, but modulates structure and expression of spontaneous periodical motor activity. There occurs an essential decrease of mutual influences between motor and cardiovascular systems. In the case of preservation of motor activity bursts, a tendency for enhancement of correlational relations between the modulating rhythms of motor and somatomotor systems is observed. The cardiorespiratory interactions, more pronounced in intact rat pups in the near- and manyminute modulation diapason, under conditions of urethane, somewhat decrease, whereas the rhythmical components of the decasecond diapason—are weakly enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号