首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Positional isomers of mono-unsaturated 18:1-ACP have been used as substrates for stearoyl-acyl carrier protein delta9 desaturase to test whether a C-H bond abstraction from either the C-9 or C-10 position could lead to rearranged products diagnostic for the production of an allylic radical intermediate. The reconstituted enzyme complex was able to desaturate trans-delta11-18:1-ACP and trans-delta7-18:1-ACP, but not trans-delta9-18:1-ACP, or any of the corresponding cis-isomers. Enzymatic desaturation of trans-delta11-18:1-ACP gave a single product, cis-delta9,trans-delta11-18:2-ACP, as characterized by gas chromatography-electron ionization mass spectrometry of the molecular ions, the fragmentation products of pyrrolidide and 4,4-dimethyloxazoline derivatives, and by comparison of chromatographic retention times with authentic standards. Reaction of trans-delta7-18:1-ACP gave two enzymic products, trans-delta7,cis-delta9-18:2 (approximately 80%) and trans-delta7,cis-delta11-18:2 (approximately 20%). The major product was likely formed in a reaction identical to that of 18:0-ACP desaturation, while the minor product was likely formed by alternative placement of the C-10 and C-11 positions of the substrate analog in a cis configuration relative to the diiron oxidant. Since none of the products observed are indicative of rearrangements originating with an allylic radical, a discussion of the origins and possible implications of these results is presented.  相似文献   

2.
Lyle KS  Haas JA  Fox BG 《Biochemistry》2003,42(19):5857-5866
Stearoyl-ACP Delta9 desaturase (Delta9D) catalyzes the NADPH- and O(2)-dependent insertion of a cis double bond between the C9 and C10 positions of stearoyl-ACP (18:0-ACP) to produce oleoyl-ACP (18:1-ACP). This work revealed the ability of reduced [2Fe-2S] ferredoxin (Fd) to act as a catalytically competent electron donor during the rapid conversion of 18:0-ACP into 18:1-ACP. Experiments on the order of addition for substrate and reduced Fd showed high conversion of 18:0-ACP to 18:1-ACP (approximately 95% per Delta9D active site in a single turnover) when 18:0-ACP was added prior to reduced Fd. Reactions of the prereduced enzyme-substrate complex with O(2) and the oxidized enzyme-substrate complex with reduced Fd were studied by rapid-mix and chemical quench methods. For reaction of the prereduced enzyme-substrate complex, an exponential burst phase (k(burst) = 95 s(-1)) of product formation accounted for approximately 90% of the turnover expected for one subunit in the dimeric protein. This rapid phase was followed by a slower phase (k(linear) = 4.0 s(-1)) of product formation corresponding to the turnover expected from the second subunit. For reaction of the oxidized enzyme-substrate complex with excess reduced Fd, a slower, linear rate (k(obsd) = 3.4 s(-1)) of product formation was observed over approximately 1.5 turnovers per Delta9D active site potentially corresponding to a third phase of reaction. An analysis of the deuterium isotope effect on the two rapid-mix reaction sequences revealed only a modest effect on k(burst) ((D)k(burst) approximately 1.5) and k(linear) (D)k(linear) approximately 1.4), indicating C-H bond cleavage does not contribute significantly to the rate-limiting steps of pre-steady-state catalysis. These results were used to assemble and evaluate a minimal kinetic model for Delta9D catalysis.  相似文献   

3.
Recombinant stearoyl-acyl carrier protein desaturase (EC 1.14.99.6) from castor seed has been crystallized with polyethylene glycol 8000 as precipitant. The crystals are orthorhombic, space group P2(1)2(1)2(1) with cell dimensions a = 81.3, b = 146.4 and c = 197.7 A. The observed diffraction pattern extends to at least 2.5 A resolution. Rotation function calculations indicate a non-crystallographic 3-fold rotation axis parallel to the crystallographic a-axis. Perpendicular to this axis, 2-fold rotation axes were found at 30 degrees intervals, i.e. maxima at kappa = 180 degrees, phi = 90 degrees and omega = 30 degrees and 60 degrees, respectively. Together with the packing density of the crystals (Vm = 2.4 A3/Da for n = 6), these results suggest, that the crystal asymmetric unit most likely contains a hexamer of desaturase subunits.  相似文献   

4.
As special maize with more than 6% oil concentration in the grain, high-oil maize has received increased interest recently. To date, little is known about the expressions of genes involved in fatty acid metabolism of high-oil maize. Stearoyl-acyl carrier protein desaturase (SAD) is a key enzyme that converts stearic acid to oleic acid. In this study, two-dimensional electrophoresis, gas chromatography, and real-time PCR were used to determine the expressions of SAD at three seed development stages in high-oil and normal maize inbred lines. SAD was significantly more abundantly expressed in high-oil maize than in normal maize, not only at the protein and mRNA levels, but also at the product level. These results suggested that a high expression of SAD may play an important role in increasing oil concentration in high-oil maize.  相似文献   

5.
6.
7.
8.
Fatty acid desaturases are enzymes that introduce double bonds into fatty acyl chains, among which stearoyl-acyl carrier protein desaturase (S-ACP-DES) was widely distributed in the plant kingdom. We cloned the cDNA coding for fab2/ssi2, an S-ACP-DES from Arabidopsis thaliana, into the vector pET30a and heterologously expressed this fatty acid desaturase in Escherichia coli BL21 (DE3). After being induced with IPTG, the fusion protein was efficiently expressed in a soluble form. The SSI2 desaturase was purified by nickel ion affinity chromatography and the product obtained showed a single band by SDS–PAGE analysis. The expression of ssi2 modified the fatty acid composition of the recombinant strain. The ratio of palmitic acid (16:0) decreased from 45.2% (the control strain) to 35.2% while palmitoleate (16:1Δ9) and cis-vaccenate (18:1Δ11) levels were enhanced to some extent. The desaturase enzymatic activity was measured in vivo when the enzyme substrate stearic acid was provided in the culture medium. A new fatty acid, oleic acid (18:1Δ9) was found in the recombinant strain which did not exist in wild-type E. coli. These results demonstrated that the cofactors of the host system can complement the requirement of the SSI2 desaturase.  相似文献   

9.
10.
11.
A new full length cDNA clone encoding stearoyl-ACP desaturase (SAD) was isolated from seeds of Pongamia pinnata, an oil yielding legume plant. The cDNA clone (PpSAD) contained a single open reading frame of 1182-bp coding for 393 amino acids with a predicted molecular mass of 45.04 kDa, and shares similarity with SAD from other plants. Characteristics of the deduced protein were predicted and analyzed using molecular homology modeling; its three dimensional structure strongly resembled the crystal structure of Ricinus communis (RcSAD). Southern blot analysis indicated that ‘sad’ is a multiple copy gene and was a member of a small gene family. Expression analysis using quantitative real-time PCR revealed that the gene showed marked distinct expression during different stages of seed developments. The results of the expression analysis in this study, combined with existing research, suggest that ‘sad’ gene may be involved in the regulation of plant seed growth and development.  相似文献   

12.
The three-dimensional structure of recombinant homodimeric delta9 stearoyl-acyl carrier protein desaturase, the archetype of the soluble plant fatty acid desaturases that convert saturated to unsaturated fatty acids, has been determined by protein crystallographic methods to a resolution of 2.4 angstroms. The structure was solved by a combination of single isomorphous replacement, anomalous contribution from the iron atoms to the native diffraction data and 6-fold non-crystallographic symmetry averaging. The 363 amino acid monomer consists of a single domain of 11 alpha-helices. Nine of these form an antiparallel helix bundle. The enzyme subunit contains a di-iron centre, with ligands from four of the alpha-helices in the helix bundle. The iron ions are bound in a highly symmetric environment, with one of the irons forming interactions with the side chains of E196 and H232 and the second iron with the side chains of E105 and H146. Two additional glutamic acid side chains, from E143 and E229, are within coordination distance to both iron ions. A water molecule is found within the second coordination sphere from the iron atoms. The lack of electron density corresponding to a mu-oxo bridge, and the long (4.2 angstroms) distance between the iron ions suggests that this probably represents the diferrous form of the enzyme. A deep channel which probably binds the fatty acid extends from the surface into the interior of the enzyme. Modelling of the substrate, stearic acid, into this channel places the delta9 carbon atom in the vicinity of one of the iron ions.  相似文献   

13.
Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Delta9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [(14)C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium x hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Delta9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction.  相似文献   

14.
《Plant Science Letters》1979,14(1):43-48
A microsomal fraction from leek epidermal cells synthesized stearoyl-acyl carrier protein (ACP) from stearate in the presence of ACP, ATP and Mg2+. The acyl-ACP synthetase accepted stearate rather than oleate or palmitate as substrates. The reaction products were characterized by gel electrophoresis. The reaction was depending upon time, protein amounts, ATP and ACP concentrations.  相似文献   

15.
Delta9 stearoyl-acyl carrier protein (ACP) desaturase is a mu-oxo-bridged di-iron enzyme, which belongs to the structural class I of large helix bundle proteins and that catalyzes the NADPH and O2-dependent formation of a cis-double bond in stearoyl-ACP. The crystal structures of complexes with azide and acetate, respectively, as well as the apoand single-iron forms of Delta9 stearoyl-ACP desaturase from Ricinus communis have been determined. In the azide complex, the ligand forms a mu-1,3-bridge between the two iron ions in the active site, replacing a loosely bound water molecule. The structure of the acetate complex is similar, with acetate bridging the di-iron center in the same orientation with respect to the di-iron center. However, in this complex, the iron ligand Glu196 has changed its coordination mode from bidentate to monodentate, the first crystallographic observation of a carboxylate shift in Delta9 stearoyl-ACP desaturase. The two complexes are proposed to mimic a mu-1,2 peroxo intermediate present during catalytic turnover. There are striking structural similarities between the di-iron center in the Delta9 stearoyl-ACP desaturase-azide complex and in the reduced rubrerythrin-azide complex. This suggests that Delta9 stearoyl-ACP desaturase might catalyze the formation of water from exogenous hydrogen peroxide at a low rate. From the similarity in iron center structure, we propose that the mu-oxo-bridge in oxidized desaturase is bound to the di-iron center as in rubrerythrin and not as reported for the R2 subunit of ribonucleotide reductase and the hydroxylase subunit of methane monooxygenase. The crystal structure of the one-iron depleted desaturase species demonstrates that the affinities for the two iron ions comprising the di-iron center are not equivalent, Fe1 being the higher affinity site and Fe2 being the lower affinity site.  相似文献   

16.
Stearoyl-acyl carrier protein desaturase (Delta9D) catalyzes the O(2) and 2e(-) dependent desaturation of stearoyl-acyl carrier protein (18:0-ACP) to yield oleoyl-ACP (18:1-ACP). The 2e(-) are provided by essential interactions with reduced plant-type [2Fe-2S] ferredoxin (Fd). We have investigated the protein-protein interface involved in the Fd-Delta9D complex by the use of chemical cross-linking, site-directed mutagenesis, steady-state kinetic approaches, and molecular docking studies. The treatment of the different proteins with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide revealed that carboxylate residues from Fd and lysine residues from Delta9D contribute to cross-linking. The single substitutions of K60A, K56A, and K230A on Delta9D decreased the k(cat)/K(M) for Fd by 4-, 22-, and 2400-fold, respectively, as compared to wt Delta9D and a K41A substitution. The double substitution K56A/K60A decreased the k(cat)/K(M) for Fd by 250-fold, whereas the triple mutation K56A/K60A/K230A decreased the k(cat)/K(M) for Fd by at least 700 000-fold. These results strongly implicate the triad of K56, K60, and K230 of Delta9D in the formation of a catalytic complex with Fd. Molecular docking studies indicate that electrostatic interactions between K56 and K60 and the carboxylate groups on Fd may situate the [2Fe-2S] cluster of Fd closer to W62, a surface residue that is structurally conserved in both ribonucleotide reductase and mycobacterial putative acyl-ACP desaturase DesA2. Owing to the considerably larger effects on catalysis, K230 appears to have other contributions to catalysis arising from its positioning in helix 7 and its close spatial location to the diiron center ligands E229 and H232. These results are considered in the light of the presently available models for Fd-mediated electron transfer in Delta9D and other protein-protein complexes.  相似文献   

17.
Extracts of developing soybean cotyledons contain a highly specific stearyl acyl carrier protein (ACP) desaturase which in the presence of NADPH, O2, ferredoxin and ferredoxin: NADP+ reductase, rapidly converts stearyl ACP to oleyl ACP. The enzyme system has a high affinity for O2, near-maximal activity being obtained at only 10 μm O2. The pH optimum for the desaturase is 6.0. Stearic acid and stearyl-CoA, alone or in the presence of acyl carrier protein, are totally inactive. Although the enzyme is found in extracts prepared from developing soybean seeds (15–50 days after flowering), activity was not detected in extracts of germinated seeds.  相似文献   

18.
5-Hexadecenoic acid can be used to produce a semichemical method to control the disease-carrying mosquito Culex quinquefasciatus. This unusual fatty acid is produced in the seed of Kochia scoparia. We have isolated two acyl-acyl carrier protein desaturases from this species and expressed them in Escherichia coli to facilitate functional characterisation.  相似文献   

19.
Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30°C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18°C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30°C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18°C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号