首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of positively charged residues at the N termini of signal peptides in protein export has been studied in Bacillus subtilis. Bacillus signal peptides (alkaline protease [Apr] and neutral protease [Npr] from Bacillus amyloliquefaciens) were altered and fused to mature levansucrase (Lvs). The effects of the various alterations on the export of Lvs in B. subtilis were determined. The replacement of positively charged residues with neutral residues in both Apr and Npr signal peptides resulted in a slight defect in the export of Lvs from B. subtilis. Introduction of a negatively charged residue (aspartic acid) at the N terminus of Npr signal peptide blocked the export of Lvs. However, Apr signal peptide with a net charge of -3 (three aspartic acid residues) was still functional.  相似文献   

2.
Summary The ability of the Bacillus subtilis secretion machinery to interact with a heterologous signal peptide was studied using a plant (wheat -amylase) signal peptide. The plant signal peptide was capable of mediating secretion of Escherichia coli alkaline phosphatase and B. amyloliquefaciens levansucrase from B. subtilis. This secretion was dependent on the plant signal peptide, as deletion of five amino acids from the hydrophobic core resulted in a block of secretion. Attempts to improve the efficiency of the plant signal peptide in B. subtilis were made by increasing the length of the hydrophobic core from 10 to 16 residues by insertion of 2, 4, 5 or 6 amino acids. None of the alterations improved the secretion efficiency relative to the wild-type plant signal peptide.  相似文献   

3.
A synthetic oligodeoxynucleotide encoding the vasopressin peptide was ligated to the 3' terminal codon of sacB, the structural gene of levansucrase. This gene fusion was integrated into the chromosome of a Bacillus subtilis strain able to overproduce levansucrase. The extracellular production of the hybrid protein, consisting of the whole levansucrase primary sequence plus the nine amino acids of the vasopressin peptide added at the C-terminal end, represented 50-55% of that found for the wild-type levansucrase (20 mg l-1). The purified hybrid protein displayed the same conformational stability, protease insensitivity and enzymic properties as the wild-type levansucrase. However, the rate and the yield of the unfolding-folding transition at the pH and temperature used for bacterial growth were lower in the case of the hybrid protein; the latter also required a higher iron concentration to be completely folded.  相似文献   

4.
5.
The wild-type maltose-binding protein (MBP) signal peptide is 26 amino acids in length. A mutationally altered MBP signal peptide has been previously described that is missing one of the basic residues from the hydrophilic segment and seven residues from the hydrophobic core; however, it still facilitates MBP secretion to the periplasm at a rate and efficiency comparable to those of the wild-type structure. Thus, this truncated signal peptide (designated the R2 signal peptide) must retain all of the essential features required for proper export function. In this study, alterations were obtained in the R2 signal peptide that resulted in an export-defective MBP. For the first time, signal sequence mutations were obtained that resulted in the synthesis of a totally export-defective MBP. As was previously the case for the wild-type signal peptide, the introduction of either charged residues or helix-breaking proline residues adversely affected export function. Despite these similarities, the position of these alterations within the R2 signal peptide, their relative effects on MBP secretion and processing, and an analysis of the ability of various extragenic prl mutations to suppress the secretion defects provide additional insight into the minimal requirements for a functional MBP signal peptide.  相似文献   

6.
Nucleotide sequencing of the celZ gene encoding the extracellular endoglucanase Z of Erwinia chrysanthemi indicated the presence of an open reading frame encoding 428 amino acids. The mature protein appeared to be extended by a signal peptide of 43 amino acids; this sequence is unusually long and positively charged (+5). It was shown to function as a signal peptide by fusing it to a truncated phoA gene encoding Escherichia coli alkaline phosphatase. Comparison of the encoded sequence with those of the endoglucanases of Bacillus subtilis and alkalophilic Bacillus revealed the existence of a region of extensive homology occurring in all three proteins at about the same distance from the NH2-terminal end. These regions may be involved in substrate binding and/or catalytic sites.  相似文献   

7.
By using an in vitro system for the translocation of secretory proteins in Escherichia coli, detailed and quantitative studies were performed as to the function of the positively charged amino acid residues at the amino terminus of the signal peptide. Uncleavable OmpF-Lpp, a model secretory protein carrying an uncleavable signal peptide, and mutant proteins derived from it were used as translocation substrates. When the positive charge, +2 (LysArg) for the wild-type, was changed to 0, -1, or -2, little or no translocation was observed. The number of the positive charge was altered by introducing different numbers of Lys or Arg residues into the amino terminus. The rate of translocation was roughly proportional to this number, irrespective of whether the charged amino acid residues were Lys or Arg. When the amino-terminal LysArg was replaced by His residues, translocation took place more efficiently at pH 6.5 than pH 8.0, whereas that of the wild-type was about the same as the two pH values. We conclude that the signal peptide requires a positive charge at its amino-terminal region to function in the translocation reaction and that the rate of translocation is roughly proportional to the number of the positively charged group, irrespective of the amino acid species that donates the charge. Evidence suggesting that the positive charge is involved in the binding of precursor proteins to the membrane surface to initiate translocation is also presented.  相似文献   

8.
Kim Y  Kwak GH  Lee C  Kim HY 《BMB reports》2011,44(10):669-673
Human methionine sulfoxide reductase B3A (hMsrB3A) is an endoplasmic reticulum (ER) reductase that catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine in proteins. In this work, we identified an antimicrobial peptide from hMsrB3A protein. The N-terminal ER-targeting signal peptide (amino acids 1-31) conferred an antimicrobial effect in Escherichia coli cells. Sequence and structural analyses showed that the overall positively charged ER signal peptide had an Argand Pro-rich region and a potential hydrophobic α-helical segment that contains 4 cysteine residues. The potential α-helical region was essential for the antimicrobial activity within E. coli cells. A synthetic peptide, comprised of 2-26 amino acids of the signal peptide, was effective at killing Gram-negative E. coli, Klebsiella pneumoniae, and Salmonella paratyphi, but had no bactericidal activity against Gram-positive Staphylococcus aureus.  相似文献   

9.
Leader peptidase, an integral transmembrane protein of Escherichia coli, is synthesized without a cleavable amino-terminal leader peptide. Of the five domains that participate in the membrane assembly of this protein, one is an internal "signal" region. We have used oligonucleotide-directed mutagenesis to examine the properties of the internal signal that are crucial for leader peptidase assembly. For this purpose, the net charge at the amino terminus of the internal signal was changed from +2 to +1 and -1 and, at the carboxyl terminus of the signal, from 0 to -1 or +1. These mutations had no effect on the membrane assembly of leader peptidase, suggesting that the charges have little role in the signal function. The apolar core of this signal was disrupted by substitution of basic amino acids for apolar residues. Substitution of an arginyl residue at position 70, or two arginyl residues at position 67 and 69, prevented membrane assembly. However, substitution of an arginyl residue at position 66 or either arginyl or lysyl residue at position 68 was without effect. Thus, while the apolar character of the internal signal is important, the precise position of a charged residue determines its effect on assembly.  相似文献   

10.
Extracellular Phr pentapeptides produced by gram-positive, spore-forming bacteria regulate processes during the transition from exponential- to stationary-phase growth. Phr pentapeptides are produced by cleavage of their precursor proteins. We determined the residues that direct this cleavage for the Bacillus subtilis Phr peptide, CSF, which is derived from the C terminus of PhrC. Strains expressing PhrC with substitutions in residues -1 to -5 relative to the cleavage site had a defect in CSF production. The mutant PhrC proteins retained a functional signal sequence for secretion, as assessed by secretion of PhrC-PhoA fusions. To determine whether the substitutions directly affected cleavage of PhrC to CSF, we tested cleavage of synthetic pro-CSF peptides that corresponded to the C terminus of PhrC and had an amino acid substitution at the -2, -3, or -4 position. The mutant pro-CSF peptides were cleaved less efficiently to CSF than the wild-type pro-CSF peptide whether they were incubated with whole cells, cell wall material, or the processing protease subtilisin or Vpr. To further define the range of amino acids that support CSF production, the amino acid at the -4 position of PhrC was replaced by the 19 canonical amino acids. Only four substitutions resulted in a >2-fold defect in CSF production, indicating that this position is relatively immune to mutational perturbations. These data revealed residues that direct cleavage of CSF and laid the groundwork for testing whether other Phr peptides are processed in a similar manner.  相似文献   

11.
Comparative analyses of a number of secretory proteins processed by eukaryotic and prokaryotic signal peptidases have identified a strongly conserved feature regarding the residues positioned -3 and -1 relative to the cleavage site. These 2 residues of the signal peptide are thought to constitute a recognition site for the processing enzyme and are usually amino acids with small, neutral side chains. It was shown previously that the substitution of aspartic acid for alanine at -3 of the Escherichia coli maltose-binding protein (MBP) signal peptide blocked maturation by signal peptidase I but had no noticeable effect or MBP translocation across the cytoplasmic membrane of its biological activity. This identified an excellent system in which to undertake a detailed investigation of the structural requirements and limitations for the cleavage site. In vitro mutagenesis was used to generate 14 different amino acid substitutions at -3 and 13 different amino acid substitutions at -1 of the MBP signal peptide. The maturation of the mutant precursor species expressed in vivo was examined. Overall, the results obtained agreed fairly well with statistically derived models of signal peptidase I specificity, except that cysteine was found to permit efficient processing when present at either -3 and -1, and threonine at -1 resulted in inefficient processing. Interestingly, it was found that substitutions at -1 which blocked processing at the normal cleavage site redirected processing, with varying efficiencies, to an alternate site in the signal peptide represented by the Ala-X-Ala sequence at positions -5 to -3. The substitution of aspartic acid for alanine at -5 blocked processing at this alternate site but not the normal site. The amino acids occupying the -5 and -3 positions in many other prokaryotic signal peptides also have the potential for constituting alternate processing sites. This appears to represent another example of redundant information contained within the signal peptide.  相似文献   

12.
Bacillus subtilis cells expressing a hybrid protein (Lvsss-Cat) consisting of the B. amyloliquefaciens levansucrase signal peptide fused to B. pumilus chloramphenicol acetyltransferase (Cat) are unable to export Cat protein into the growth medium. A series of tripartite protein fusions was constructed by inserting various lengths of the Cat sequences between the levansucrase signal peptide and staphylococcal protein A or Escherichia coli alkaline phosphatase. Biochemical characterization of the various Cat protein fusions revealed that multiple regions in the Cat protein were causing the export defect.  相似文献   

13.
P Novak  I K Dev 《Journal of bacteriology》1988,170(11):5067-5075
The degradation of the prolipoprotein signal peptide in vitro by membranes, cytoplasmic fraction, and two purified major signal peptide peptidases from Escherichia coli was followed by reverse-phase liquid chromatography (RPLC). The cytoplasmic fraction hydrolyzed the signal peptide completely into amino acids. In contrast, many peptide fragments accumulated as final products during the cleavage by a membrane fraction. Most of the peptides were similar to the peptides formed during the cleavage of the signal peptide by the purified membrane-bound signal peptide peptidase, protease IV. Peptide fragments generated during the cleavage of the signal peptide by protease IV and a cytoplasmic enzyme, oligopeptidase A, were identified from their amino acid compositions, their retention times during RPLC, and knowledge of the amino acid sequence of the signal peptide. Both enzymes were endopeptidases, as neither dipeptides nor free amino acids were formed during the cleavage reactions. Protease IV cleaved the signal peptide predominantly in the hydrophobic segment (residues 7 to 14). Protease IV required substrates with hydrophobic amino acids at the primary and the adjacent substrate-binding sites, with a minimum of three amino acids on either side of the scissile bond. Oligopeptidase A cleaved peptides (minimally five residues) that had either alanine or glycine at the P'1 (primary binding site) or at the P1 (preceding P'1) site of the substrate. These results support the hypothesis that protease IV is the major signal peptide peptidase in membranes that initiates the degradation of the signal peptide by making endoproteolytic cuts; oligopeptidase A and other cytoplasmic enzymes further degrade the partially degraded portions of the signal peptide that may be diffused or transported back into the cytoplasm from the membranes.  相似文献   

14.
Pea glutathione reductase (GR) is dually targeted to mitochondria and chloroplasts by means of an N-terminal signal peptide of 60 amino acid residues. After import, the signal peptide is cleaved off by the mitochondrial processing peptidase (MPP) in mitochondria and by the stromal processing peptidase (SPP) in chloroplasts. Here, we have investigated determinants for processing of the dual targeting signal peptide of GR by MPP and SPP to examine if there is separate or universal information recognised by both processing peptidases. Removal of 30 N-terminal amino acid residues of the signal peptide (GRDelta1-30) greatly stimulated processing activity by both MPP and SPP, whereas constructs with a deletion of an additional ten amino acid residues (GRDelta1-40) and deletion of 22 amino acid residues in the middle of the GR signal sequence (GRDelta30-52) could be cleaved by SPP but not by MPP. Numerous single mutations of amino acid residues in proximity of the cleavage site did not affect processing by SPP, whereas mutations within two amino acid residues on either side of the processing site had inhibitory effect on processing by MPP with a nearly complete inhibition for mutations at position -1. Mutation of positively charged residues in the C-terminal half of the GR targeting peptide inhibited processing by MPP but not by SPP. An inhibitory effect on SPP was detected only when double and triple mutations were introduced upstream of the cleavage site. These results indicate that: (i) recognition of processing site on a dual targeted GR precursor differs between MPP and SPP; (ii) the GR targeting signal has similar determinants for processing by MPP as signals targeting only to mitochondria; and (iii) processing by SPP shows a low level of sensitivity to single mutations on targeting peptide and likely involves recognition of the physiochemical properties of the sequence in the vicinity of cleavage rather than a requirement for specific amino acid residues.  相似文献   

15.
Leader peptidase, typical of inner membrane proteins of Escherichia coli, does not have an amino-terminal leader sequence. This protein contains an internal signal peptide, residues 51-83, which is essential for assembly and remains as a membrane anchor domain. We have employed site-directed mutagenesis techniques to either delete residues within this domain or substitute a charged amino acid for one of these residues to determine the important properties of the internal signal. The deletion analysis showed that a very small apolar domain, residues 70-76, is essential for assembly, whereas residues that flank it are dispensable for its function. However, point mutations with charged amino acid residues within the polar sequence (residues 77-82) slow or abolish leader peptidase membrane assembly. Thus, a polar region, Arg-Ser-Phe-Ile-Tyr-Glu, is important for the signal peptide function of leader peptidase, unlike other signals identified thus far.  相似文献   

16.
Hybrid genes were constructed to express bifunctional hybrid proteins in which staphyloccal nuclease A with or without an amino-terminai OmpA signal sequence was fused with TEM β-lactamase (at the carboxyl terminal side) using the signal peptide of the major outer membrane lipoprotein of Escherichia coli as an internal linker. The hybrid proteins were found to be inserted in the membrane. Orientation of the hybrid protein with the OmpA signal peptide showed that the nuclease was translocated into the periplasm and the β-lactamase remained in the cytoplasm. This indicates that the cleavable OmpA signal peptide served as a secretory signal for nuclease and the internal lipoprotein signal served as the transmembrane anchor, in the absence of the OmpA signal sequence the topology of the hybrid protein was reversed indicating that the internal lipoprotein signal peptide initially served as the signal peptide for the secretion of the carboxy terminal β-lactamase domain across the membrane and subsequently as a membrane anchoring signal. The role of charged amino acids in the translocation and transmembrane orientation of membrane proteins was also analysed by introducing charged amino acids to either or both sides of the internal lipoprotein signal sequence in the bifunctional hybrid proteins in the absence of the amino-terminal signal sequence. Introduction of two lysine residues at the carboxy-terminal side of the internal signal sequence reversed the topology of the transmembrane protein by translocating the aminoterminal nuclease domain across the membrane, leaving the carboxyl terminal β-actamase domain in the cytoplasm. When three more lysine residues were added to the amino-terminal side of the internal signal sequence of the same construct the membrane topology flipped back to the original orientation. A similar reversion of the topology could be obtained by introducing negatively charged residues at the amino-terminal side of the internal signal sequence. Present results demonstrate for the first time that a bifunctional transmembrane protein can be engineered to assume either of the two opposite orientations and that charge balance around the transmembrane domain is a major factor in controlling the topology of a transmembrane protein.  相似文献   

17.
The export of proteins to the periplasmic compartment of bacterial cells is mediated by an amino-terminal signal peptide. After transport, the signal peptide is cleaved by a processing enzyme, signal peptidase I. A comparison of the cleavage sites of many exported proteins has identified a conserved feature of small, uncharged amino acids at positions -1 and -3 relative to the cleavage site. To determine experimentally the sequences required for efficient signal peptide cleavage, we simultaneously randomized the amino acid residues from positions -4 to +2 of the TEM-1 beta-lactamase enzyme to form a library of random sequences. Mutants that provide wild-type levels of ampicillin resistance were then selected from the random-sequence library. The sequences of 15 mutants indicated a bias towards small amino acids. The N-terminal amino acid sequence of the mature enzyme was determined for nine of the mutants to assign the new -1 and -3 residues. Alanine was present in the -1 position for all nine of these mutants, strongly supporting the importance of alanine at the -1 position. The amino acids at the -3 position were much less conserved but were consistent with the -3 rules derived from sequence comparisons. Compared with the wild type, two of the nine mutants have an altered cleavage position, suggesting that sequence is more important than position for processing of the signal peptide.  相似文献   

18.
We present the sequence of a 2 kb fragment of the Bacillus subtilis Marburg genome containing sacB, the structural gene of levansucrase, a secreted enzyme inducible by sucrose. The peptide sequence deduced for the secreted enzyme is very similar to that directly determined by Delfour (1981) for levansucrase of the non-Marburg strain BS5. The peptide sequence is preceded by a 29 amino acid signal peptide. Codon usage in sacB is rather different from that in the sequenced genes of other secreted enzymes in B. subtilis, especially alpha-amylase. Genetic evidence has shown that the sacB promotor is rather far from the beginning of sacB (200 bp or more). The 200 bp region preceding sacB shows some of the features of an attenuator. A preliminary discussion of the putative workings and roles of this attenuator-like structure is proposed. sacRc mutations, which allow constitutive expression of levansucrase, have been located within the 450 bp upstream of sacB. It is shown that sacRc and sacR+ alleles control in cis the expression of the adjacent sacB gene.  相似文献   

19.
The Escherichia coli maltose-binding protein (MBP) R2 signal peptide is a truncated version of the wild-type structure that still facilitates very efficient export of MBP to the periplasm. Among single amino acid substitutions in the R2 signal peptide resulting in an export-defective precursor MBP (pMBP) were two that replaced residues in the consensus Ala-X-Ala sequence (residues -3 to -1) that immediately precedes the cleavage site. It was suggested that the functional hydrophobic core and signal peptidase recognition sequence of this signal peptide substantially overlap and that these two alterations affect both pMBP translocation and processing. In this study, the export of pMBP by the mutants, designated CC15 and CC17, with these two alterations was investigated further. The pMBP of mutant CC17 has an Arg substituted for Leu at the -2 position. It was found that CC17 cells exported only a very small amount of MBP, but that which was exported appeared to be correctly processed. This result was consistent with other studies that have concluded that virtually any amino acid can occupy the -2 position. For mutant CC15, which exhibits a fully Mal+ phenotype, an Asp is substituted for the Ala at the -3 position. CC15 cells were found to export large quantities of unprocessed, soluble pMBP to the periplasm, although such export was achieved in a relatively slow, posttranslational manner. This result was also consistent with other studies that suggested that charged residues are normally excluded from the -3 position of the cleavage site. Using in vitro oligonucleotide-directed mutagenesis, we constructed a new signal sequence mutant in which Asp was substituted for Arg at the -3 position of an otherwise wild-type MBP signal peptide. This alteration had no apparent effect on pMBP translocation across the cytoplasmic membrane, but processing by signal peptidase was inhibited. This pMBP species with its full-length hydrophobic core remained anchored to the membrane, where it could still participate in maltose uptake. The implications of these results for models of protein export are discussed.  相似文献   

20.
Alkaline elastase YaB is an extracellular serine protease of the alkalophilic Bacillus strain YaB. We cloned the structural gene, ale, and determined the nucleotide sequence. The mature enzyme (268 amino acids) was preceded by a putative signal sequence and a prosequence (27 and 83 amino acids, respectively). The mature enzyme was 55% homologous to subtilisin BPN'. Almost all the positively charged residues are predicted to be on the surface of the molecule, which would facilitate binding to elastin. The P1 substrate site-related sequences differed between alkaline elastase YaB and subtilisin BPN'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号