首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida tropicalis, a representative alkane- and higher fatty acid-utilizing yeast, can grow on propionate used as sole carbon and energy source. Initial pH of the medium markedly affected the growth of the yeast on propionate. In propionate-grown cells, several enzymes associated with peroxisomes and/or participating in propionate metabolism were induced in connection with the appearance of the characteristic peroxisomes. Acetate-grown cells of this yeast had only few peroxisomes, while alkane-grown cells contained conspicuous numbers of the organelles. As compared with alkane-grown cells, some specific features were observed in peroxisomes and enzymes associated with the organelles of propionate-grown cells: The shape of peroxisomes was large but the number was small; unlike localization of catalase in peroxisomes of alkane-grown cells, the enzyme of propionate-grown cells was mainly localized in cytoplasm; as for carnitine acetyltransferase localized almost equally in peroxisomes and mitochondria in alkane-grown cells, propionate-grown cells contained mainly the mitochondrial type enzyme. A propionate-activating enzyme, which was different from acetyl-CoA synthetase, was also induced in cytoplasm of propionate-grown cells. The role of carnitine acetyltransferase and the propionate-activating enzyme in propionate metabolism is discussed in comparison with the role of carnitine acetyltransferase and acetyl-CoA synthetase in acetate metabolism.  相似文献   

2.
Peroxisomal carnitine palmitoyltransferase was purified by solubilization using Tween 20 and KCl from the large granule fraction of the liver of clofibrate-treated chick embryo, DEAE-Sephacel and blue Sepharose CL-6B column chromatography. The peroxisomal carnitine palmitoyltransferase was an Mr 64,000 polypeptide; the mitochondrial carnitine palmitoyltransferase had a subunit molecular weight of 69,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The carnitine acetyltransferase was an Mr 64,000 polypeptide. Antibody against purified peroxisomal carnitine palmitoyltransferase reacted only with peroxisomal carnitine palmitoyltransferase, but not with mitochondrial carnitine palmitoyltransferase or carnitine acetyltransferase. In addition, anti-peroxisomal carnitine palmitoyltransferase reacted only with the protein in peroxisomes purified from chick embryo liver by sucrose density gradient centrifugation. Thus, it was confirmed that purified peroxisomal carnitine palmitoyltransferase was a peroxisomal protein. Compared with mitochondrial carnitine palmitoyltransferase, peroxisomal carnitine palmitoyltransferase was extremely resistant to inactivation by trypsin. The pH optimum of peroxisomal carnitine palmitoyltransferase was 8.5, differing from that of mitochondrial carnitine palmitoyltransferase. The Km value of peroxisomal carnitine palmitoyltransferase for palmitoyl-CoA (32 microM) was similar to that of the mitochondrial one, whereas those values for L-carnitine (140 microM), palmitoyl-L-carnitine (43 microM) and CoA (9 microM) were lower than those of mitochondrial carnitine palmitoyltransferase. Peroxisomal carnitine palmitoyltransferase exhibited similar substrate specificities in both the forward and reverse reactions, with the highest activity toward lauroyl derivatives. Furthermore, this enzyme showed relatively high affinities for long-chain acyl derivatives (C10-C16) and similar Km values (30-50 microM) for acyl-CoAs, acylcarnitine and CoA, and a constant Km value (approximately 150 microM) for carnitine. These results indicate that peroxisomal carnitine palmitoyltransferase played a role in the modulation of the intracellular CoA/long-chain acyl-CoA ratio at the hatching stage of chicken when long-chain fatty acids are actively oxidized in peroxisomes.  相似文献   

3.
Carnitine is a well-known naturally occurring compound, very similar to butyrate, with an essential role in intermediary metabolism mainly at the mitochondrial level. Since butyrate inhibits the enzyme histone deacetylase and is capable of suppressing position-effect variegation in Drosophila melanogaster, we tested a further possible function of carnitine in the nucleus, using an assay for the suppression of position-effect variegation. We tested three physiological forms of carnitine (l-carnitine, l-propionylcarnitine, l-acetylcarnitine) for the ability to suppress two different chromosomal rearrangements, inducing variegation of the white + and brown + genes. The results show that the carnitine derivatives are capable of suppressing the position-effect variegation, albeit with different efficiencies. The carnitine derivatives interact lethally with Su-var(2)1 01, a mutation that induces hyperacetylation of histones, whilst hyperacetylated histories accumulated in both the nuclei of HeLa cells and Drosophila polytene chromosomes treated with the same compounds. These results strongly suggest that the carnitine derivatives suppress position-effect variegation by a mechanism similar to that of butyrate. It is suggested that carnitines may have a functional role in the nucleus, probably at the chromatin level.  相似文献   

4.
The peroxisomal beta oxidation of very long chain fatty acids (VLCFA) leads to the formation of medium chain acyl-CoAs such as octanoyl-CoA. Today, it seems clear that the exit of shortened fatty acids produced by the peroxisomal beta oxidation requires their conversion into acyl-carnitine and the presence of the carnitine octanoyltransferase (CROT). Here, we describe the consequences of an overexpression and a knock down of the CROT gene in terms of mitochondrial and peroxisomal fatty acids metabolism in a model of hepatic cells. Our experiments showed that an increase in CROT activity induced a decrease in MCFA and VLCFA levels in the cell. These changes are accompanied by an increase in the level of mRNA encoding enzymes of the peroxisomal beta oxidation. In the same time, we did not observe any change in mitochondrial function. Conversely, a decrease in CROT activity had the opposite effect. These results suggest that CROT activity, by controlling the peroxisomal amount of medium chain acyls, may control the peroxisomal oxidative pathway.  相似文献   

5.
Physiological role of peroxisomal beta-oxidation in liver of fasted rats   总被引:6,自引:0,他引:6  
In the livers of fasted rats, the activity of peroxisomal palmitocyl-CoA oxidation (NADH production) was increased more rapidly and markedly than that of mitochondrial carnitine palmitoyltransferase, which is the rate limiting enzyme of mitochondrial beta-oxidation. The peroxisomal oxidizing activity was about twice that of the control throughout the period of fasting (1-7 days). carnitine acetyltransferase activity was increased to a similar extent in both peroxisomes and mitochondria. A possible physiological role of liver peroxisomes may thus be as an effective supply of NADH2, acetyl residues and short and medium-length fatty acyl-CoA in the cells on the enhancement of peroxisomal beta-oxidation of the animals under starvation; these substances thus produced may be transported into the mitochondria as energy sources.  相似文献   

6.
The enzyme targets for chlorpromazine inhibition of rat liver peroxisomal and mitochondrial oxidations of fatty acids were studied. Effects of chlorpromazine on total fatty acyl-CoA synthetase activity, on both the first and the third steps of peroxisomal beta-oxidation, on the entry of fatty acyl-CoA esters into the peroxisome and on catalase activity, which allows breakdown of the H2O2 generated during the acyl-CoA oxidase step, were analysed. On all these metabolic processes, chlorpromazine was found to have no inhibitory action. Conversely, peroxisomal carnitine octanoyltransferase activity was depressed by 0.2-1 mM-chlorpromazine, which also inhibits mitochondrial carnitine palmitoyltransferase activity in all conditions in which these enzyme reactions are assayed. Different patterns of inhibition by the drug were, however, demonstrated for both these enzyme activities. Inhibitory effects of chlorpromazine on mitochondrial cytochrome c oxidase activity were also described. Inhibitions of both cytochrome c oxidase and carnitine palmitoyltransferase are proposed to explain the decreased mitochondrial fatty acid oxidation with 0.4-1.0 mM-chlorpromazine reported by Leighton, Persico & Necochea [(1984) Biochem. Biophys. Res. Commun. 120, 505-511], whereas depression by the drug of carnitine octanoyltransferase activity is presented as the factor responsible for the decreased peroxisomal beta-oxidizing activity described by the above workers.  相似文献   

7.
The genomic DNA of peroxisomal isocitrate lyase (ICL) isolated from an n-alkane-assimilating yeast, Candida tropicalis, was truncated to utilize the original open reading frame under the control of the GAL7 promoter and was expressed in Saccharomyces cerevisiae. The recombinant ICL was synthesized as a functionally active enzyme with a specific activity similar to the enzyme purified from C. tropicalis, and was accounted for approximately 30% of the total extractable proteins in the yeast cells. This recombinant enzyme was easily purified to homogeneity. N-Terminal amino acid sequence, molecular masses of native form and subunit, amino acid composition, peptide maps, and kinetic parameters of the recombinant ICL were essentially the same as those of ICL purified from C. tropicalis. From these facts, S. cerevisiae was suggested to be an excellent microorganism to highly express the genes encoding peroxisomal proteins of C. tropicalis.Abbreviations ICL isocitrate lyase - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis  相似文献   

8.
The activities of isocitrate lyase and malate synthase—the key enzymes in the glyoxylate cycle—were found to be fairly high in n-alkane-, acetate-, and propionate-grown cells of Candida tropicalis compared with those in glucose-grown cells. In fact, the results of immunochemical studies showed that the increases in the enzyme levels resulted from increases in the amounts of the enzyme proteins. But the increases in these enzyme activities were not always coincident with the appearance of peroxisomes. Isocitrate lyase and malate synthase were purified from a peroxisome-containing particulate fraction of alkane-grown cells and from whole cells grown on glucose, acetate and propionate. The respective enzymes showed no significant differences in immunochemical properties, specific activities, molecular masses of active forms and subunits, on patterns of limited proteolysis with proteases, but the malate synthases of alkane- and propionate- grown cells showed higher Km values for acetyl-CoA than the enzymes of glucose- and acetate- grown cells. The results indicated that the synthesis of the key enzymes in the glyoxylate cycle did not necessarily have to be coincident with the development of peroxisomes in this yeast.  相似文献   

9.
Data obtained in earlier studies with rats fed diets containing high doses of peroxisome proliferators (niadenate, tiadenol, clofibrate, or nitotinic acid) are used to look for a quantitative relationship between peroxisomal beta-oxidation, palmitoyl-CoA hydrolase, palmitoyl-CoA synthetase and carnitine palmitoyltransferase activities, and the cellular concentration of their substrate and reaction products. The order of the hyperlipidemic drugs with regard to their effect on CoA derivatives and enzyme activities was niadenate greater than tiadenol greater than clofibrate greater than nicotinic acid. Linear regression analysis of long-chain acyl-CoA content versus palmitoyl-CoA hydrolase and peroxisomal beta-oxidation activity showed highly significant linear correlations both in the total liver homogenate and in the peroxisome-enriched fractions. A dose-response curve of tiadenol showed that carnitine palmitoyltransferase and palmitoyl-CoA synthetase activities and the ratio of long-chain acyl-CoA to free CoASH in total homogenate rose at low doses before detectable changes occurred in the peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. A plot of this ratio parallelled the palmitoyl-CoA synthetase activity. The specific activity of microsomally localized carnitine palmitoyl-transferase was low and unchanged up to a dose where no enhanced peroxisomal beta-oxidation was observed, but over this dose the activity increased considerably so that the specific of the enzyme in the mitochondrial and microsomal fractions became comparable. The mitochondrial palmitoyl-CoA synthetase activity decreased gradually. The correlations may be interpreted as reflecting a common regulation mechanism for palmitoyl-CoA hydrolase and peroxisomal beta-oxidation enzymes, i.e., the cellular level of long-chain acyl-CoA acting as the metabolic message for peroxisomal proliferation resulting in induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. The findings are discussed with regard to their possible consequences for mitochondrial fatty acid oxidation and the conversion of long-chain acyl-L-carnitine to acyl-CoA derivatives.  相似文献   

10.
U. Winkler  H. Stabenau 《Planta》1995,195(3):403-407
Peroxisomes were isolated by gradient centrifugation from two different diatoms: Nitzschia laevis (subgroup of Pennales) and Thalassiosira fluviatilis (subgroup of Centrales). In neither of these organelles could catalase or any H2O2-forming oxidase be demonstrated. The glycolate-oxidizing enzyme present in the peroxisomes is a dehydrogenase capable of oxidizing l-lactate as well. The peroxisomes also contain the glyoxysomal markers isocitrate lyase and malate synthase. However, enzymes of the fatty-acid -oxidation pathway are located exclusively in the mitochondria. The mitochondria additionally possess glutamate-glyoxylate aminotransferase and a glycolate dehydrogenase which differs from the peroxisomal glycolate dehydrogenase since it preferably utilizes d-lactate as an alternative substrate. Hydroxypyruvate reductase and glyoxylate carboligase were not found in the cells of either diatom. By culturing Nitzschia laevis it could be demonstrated that decreasing the CO2 concentration in the aeration mixture from 2% to 0.03% and increasing the irradiance from 40 to 250 mol quanta · m–2 · s–1 resulted in an increase of all peroxisomal enzyme activities. In addition, enzyme activities of the -oxidation pathway were increased. However, mitochondrial glycolate dehydrogenase and aminotransferase did not alter their activities under these conditions. Summarizing all results, it is postulated that there are two different pathways for the metabolism of glycolate in the diatoms.This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

11.
The subcellular distribution of carnitine acetyl-, octanoyl-, and palmitoyltransferase in the livers of normal and clofibrate-treated male rats was studied with isopycnic sucrose density gradient fraction.In normal liver 48% of total carnitine acetyltransferase activity was peroxisomal, 36% of the activity located in mitochondria and 16% in a membranous fraction containing microsomes. Carnitine octanoyltransferase and carnitine palmitoyltransferase were confined almost totally (77–81%) to mitochondria in normal liver.Clofibrate treatment increased the total activity of carnitine acetyltransferase over 30 times, whereas the total activities of the other two transferases were increased only 5-fold.From the three different subcellular carnitine acetyltransferases the mitochondrial one was not responsive to clofibrate treatment, i.e. the rise in mitochondrial activity was over 70-fold as contrasted to the 6- and 14-fold rises in peroxisomal and microsomal activities, respectively. After treatment mitochondria contained 79% of total activity.It is concluded that the clofibrate-induced increase of carnitine acetyltransferase activity is not due to the peroxisomal proliferation that occurs during clofibrate treatment. The rise in peroxisomal activity contributed only 8% to the total increase.After clofibrate treatment the greatest part of carnitine octanoyl- and palmitoyltrnasferase activities were located in mitochondria but a considerable amount of both activities was found also in the soluble fraction of liver.  相似文献   

12.
The association of an ATPase with the yeast peroxisomal membrane was established by both biochemical and cytochemical procedures. Peroxisomes were purified from protoplast homogenates of the methanol-grown yeast Hansenula polymorpha by differential and sucrose gradient centrifugation. Biochemical analysis revealed that ATPase activity was associated with the peroxisomal peak fractions which were identified on the basis of alcohol oxidase and catalase activity. The properties of this ATPase closely resembled those of the mitochondrial ATPase of this yeast. The enzyme was Mg2+-dependent, had a pH optimum of approximately 8.5 and was sensitive to N,N-dicyclohexylcarbodiimide (DCCD), oligomycin and azide, but not to vanadate. A major difference was the apparent K m for ATP which was 4–6 mM for the peroxisomal ATPase compared to 0.6–0.9 mM for the mitochondrial enzyme.Cytochemical experiments indicated that the peroxisomal ATPase was associated with the membranes surrounding these organelles. After incubations with CeCl3 and ATP specific reaction products were localized on the peroxisomal membrane, both when unfixed isolated peroxisomes or formaldehyde-fixed protoplasts were used. This staining was strictly ATP-dependent; in controls performed i) in the absence of substrate, ii) in the presence of glycerol 2-phosphate instead of ATP, or iii) in the presence of DCCD, staining was invariably absent. Similar staining patterns were observed in subcellular fractions and protoplasts of Candida utilis and Trichosporon cutaneum X4, grown in the presence of ethanol/ethylamine or ethylamine, respectively.Abbreviations MES 2-(N-Morpholino)ethanesulfonic acid - DCCD N,N-dicyclohexylcarbodiimide  相似文献   

13.
The data presented herein show that both rough and smooth endoplasmic reticulum contain a medium-chain/long-chain carnitine acyltransferase, designated as COT, that is strongly inhibited by malonyl-CoA. The average percentage inhibition by 17 microM malonyl-CoA for 25 preparations is 87.4 +/- 11.7, with nine preparations showing 100% inhibition; the concentrations of decanoyl-CoA and L-carnitine were 17 microM and 1.7 mM, respectively. The concentration of malonyl-CoA required for 50% inhibition is 5.3 microM. The microsomal medium-chain/long-chain carnitine acyltransferase is also strongly inhibited by etomoxiryl-CoA, with 0.6 microM etomoxiryl-CoA producing 50% inhibition. Although palmitoyl-CoA is a substrate at low concentrations, the enzyme is strongly inhibited by high concentrations of palmitoyl-CoA; 50% inhibition is produced by 11 microM palmitoyl-CoA. The microsomal medium-chain/long-chain carnitine acyltransferase is stable to freezing at -70 degrees C, but it is labile in Triton X-100 and octylglucoside. The inhibition by palmitoyl-CoA and the approximate 200-fold higher I50 for etomoxiryl-CoA clearly distinguish this enzyme from the outer form of mitochondrial carnitine palmitoyltransferase. The microsomal medium-chain/long-chain carnitine acyltransferase is not inhibited by antibody prepared against mitochondrial carnitine palmitoyltransferase, and it is only slightly inhibited by antibody prepared against peroxisomal carnitine octanoyltransferase. When purified peroxisomal enzyme is mixed with equal amounts of microsomal activity and the mixture is incubated with the antibody prepared against the peroxisomal enzyme, the amount of carnitine octanoyltransferase precipitated is equal to all of the peroxisomal carnitine octanoyltransferase plus a small amount of the microsomal activity. This demonstrates that the microsomal enzyme is antigenically different than either of the other liver carnitine acyltransferases that show medium-chain/long-chain transferase activity. These results indicate that medium-chain and long-chain acyl-CoA conversion to acylcarnitines by microsomes in the cytosolic compartment is also modulated by malonyl-CoA.  相似文献   

14.
Heart and liver mitochondrial, as well as liver peroxisomal, carnitine acetyltransferase was purified to apparent homogeneity and some properties, primarily of heart mitochondrial carnitine acetyltransferase, were determined. Hill coefficients for propionyl-CoA are 1.0 for each of the enzymes. The molecular weight of heart mitochondrial carnitine acetyltransferase, determined by SDS-PAGE, is 62,000. It is monomeric in the presence of catalytic amounts of substrate. Polyclonal antibodies against purified rat liver peroxisomal carnitine acetyltransferase precipitate liver and heart mitochondrial and liver peroxisomal carnitine acetyltransferase, but not liver peroxisomal carnitine octanoyltransferase. Liver peroxisomes, mitochondria, and microsomes and heart mitochondria all give multiple bands on Western blotting with the antibody against carnitine acetyltransferase. Major protein bands occur at the molecular weight of carnitine acetyltransferase and at 33 to 35 kDa.  相似文献   

15.
Liver mitochondria prepared by differential centrifugation are contaminated by significant quantities of peroxisomes and microsomal fractions. 'Easily solubilized carnitine palmitoyltransferase' prepared from liver mitochondria is thought to originate from the outer surface of the mitochondrial inner membrane. We have characterized the carnitine palmitoyltransferase activities of freeze-thaw extracts of rat liver mitochondrial preparations. Chromatography on Sephadex G-100 yields two broad peaks of carnitine decanoyltransferase activity: one eluted at the end of the void volume, which can be removed (precipitated) by ultracentrifugation; the second peak represents the soluble activity and is eluted at an Mr near 70,000. The activity in the soluble peak is precipitated by an antibody raised against carnitine octanoyltransferase purified from mouse liver peroxisomes. In contrast, antibody raised against carnitine palmitoyltransferase purified from liver mitochondrial membranes had no effect (P. Brady & L. Brady, personal communication). The carnitine acyltransferase activities of the Mr-70,000 peak in the presence or absence of Tween 20 showed maximum activity with decanoyl-CoA and about one-third of this activity with palmitoyl-CoA, similar to peroxisomal carnitine octanoyltransferase. These data show that 7500 g preparations of liver mitochondria isolated by differential centrifugation are enriched by peroxisomal carnitine octanoyltransferase (approx. 20% of the protein of the fraction is peroxisomal) and indicate that this enzyme may be the one reported as 'overt' or 'easily solubilized' mitochondrial carnitine palmitoyltransferase.  相似文献   

16.
Cells of Hansenula polymorpha growing exponentially on glucose generally contained a single peroxisome of small dimension, irregular in shape and located in close proximity to the cell wall. Crystalline inclusions in the peroxisomal matrix were not observed. Associations of the organelles with one or more strands of endoplasmic reticulum were evident. In stationary phase cells the size of the peroxisomes had increased considerably. They were more cubical in form and showed a partly or completely crystalline matrix.After the transfer of cells growing exponentially on glucose into media containing methanol, large peroxisomes with a partly crystalline matrix developed in the cells within 6 h. These organelles originated from the small peroxisomes in the glucose-grown cells. De novo synthesis of peroxisomes was not observed. Prolonged cultivation in the presence of methanol resulted in a gradual increase in the number of peroxisomes by means of separation of small peroxisomes from mature organelles. During growth of peroxisomes associations with the endoplasmic reticulum remained evident.The increase in volume density of peroxisomes in stationary phase cells grown on glucose and in methanol-grown cells was accompanied by the synthesis of the peroxisomal enzymes alcohol oxidase and catalase. Cytochemical staining techniques revealed that alcohol oxidase activity was only detected when the peroxisomes contained a crystalloid inclusion. Since in peroxisomes of an alcohol oxidase-negative mutant of Hansenula polymorpha crystalline inclusions were never detected, it is concluded that the development of crystalloids inside peroxisomes is due to the accumulation of alcohol oxidase in these organelles.  相似文献   

17.
The subcellular distribution of carnitine acetyl-, octanoyl-, and palmitoyl- transferase in the livers of normal and clofibrate-treated male rats was studied with isopycnic sucrose density gradient fractionation. In normal liver 48% of total carnitine acetyltransferase activity was peroxisomal, 36% of the activity located in mitochondria and 16% in a membranous fraction containing microsomes. Carnitine octanoyltransferase and carnitine palmitoyltransferase were confined almost totally (77--81%) to mitochondria in normal liver. Clofibrate treatment increased the total activity of carnitine acetyltransferase over 30 times, whereas the total activities of the other two transferases were increased only 5-fold. From the three different subcellular carnitine acetyltransferases the mitochondrial one was most responsive to clofibrate treatment, i.e. the rise in mitochondrial activity was over 70-fold as contrasted to the 6- and 14-fold rises in peroxisomal and microsomal activities, respectively. After treatment mitochondria contained 79% of total activity. It is concluded that the clofibrate-induced increase of carnitine acetyltransferase activity is not due to the peroxisomal proliferation that occurs during clofibrate treatment. The rise in peroxisomal activity contributed only 8% to the total increase. After clofibrate treatment the greatest part of carnitine octanoyl- and palmitoyltransferase activities were located in mitochondria but a considerable amount of both activities was found also in the soluble fraction of liver.  相似文献   

18.
Exposure of dark-grown restingEuglena gracilis Klebs var.bacillaris Cori to light, ethanol, or malate produced an increase in the specific activity of fumarase (EC. 4.2.1.2) and succinate dehydrogenase (EC. 1.3.99.1) during the first 8–12 h of exposure to inducer, followed by a decrease in the specific activity of both mitochondrial enzymes between 12 and 72 h. The increased specific activity represented a net increase in the level of active enzyme, and it was dependent upon cytoplasmic protein synthesis. The photoinduction of fumarase required continuous illumination while the subsequent decrease in fumarase specific activity was independent of light. Light had little effect on the ethanol and malate induction of fumarase and succinate dehydrogenase. In the mutant W3BUL, which has no detectable protochlorophyll(ide) and chloroplast DNA, light induced both mitochondrial enzymes and the kinetics of enzyme induction were similar to the induction kinetics in wild-type cells. The induction of mitochondrial enzymes appears to be controlled by a non-chloroplast photoreceptor. Dark-grown resting cells of the plastidless mutant W10SmL have lost the ability to regulate fumarase levels. In this mutant, the specific activity of fumarase fluctuated and light had little effect on these fluctuations, indicating that fumarase synthesis was uncoupled from the nonchloroplast photoreceptor. Ethanol addition produced transient changes in fumarase specific activity in W10SmL indicating that in this mutant, mitochondrial enzymes are still inductible by metabolites. Fumarase synthesis in wild-type cells was not induced in the dark by levulinic acid, a chemical inducer of the breakdown ofEuglena storage carbohydrates. Taken together, our results indicate that the photoinduction of mitochondrial enzyme synthesis is not a result of the photoinduction of carbohydrate breakdown. The mechanisms by which light and organic carbon induce the synthesis ofEuglena mitochondria may differ.  相似文献   

19.
In batch suspension cultures of Nicotiana tabacum and Datura innoxia protein kinase activity extracted from the whole cells and assayed with casein as substrate was followed over the growth cycle. In one case (N. tabacum) the activity was also determined in the nuclei preparation obtained from the suspension cultured cells. Immediately at the onset of the growth curve the protein kinase level increases strongly and reaches a maximum value at the early phase of proliferation; the enzyme level from the nuclei is slightly delayed. A comparison with protein synthesis shows that protein kinases are among the first proteins synthesized in the growth cycle. Chromatographic separation of the enzymes contributing to the total activity revealed that both in the extract of whole cells and in the nuclei two enzyme species are present. Their time course is similar to that of the total protein kinase level, although the activity corresponding to the enzyme with the higher molecular weight in the case of the whole cell extract is slightly delayed. The possible significance of protein phosphorylation in the growth cycle is discussed.  相似文献   

20.
N. Burgess  D. R. Thomas 《Planta》1986,167(1):58-65
Purified pea cotyledon mitochondria did not oxidise acetyl-CoA in the presence of carnitine. However, acetylcarnitine was oxidised. It was concluded that acetylcarnitine passed through the mitochondrial membrane barrier but acetyl-CoA did not. Only a sensitive radioactive assay detected carnitine acetyltransferase in intact mitochondrion or intact mitoplast preparations. When the mitochondria or mitoplasts were burst, acetyl-CoA substrate was available to the matrix carnitine acetyltransferase and a high activity of the enzyme was measured. The inner mitochondrial membrane is there-fore the membrane barrier to acetyl-CoA but acetylcarnitine is suggested to be transported through this membrane via an integral carnitine: acylcarnitine translocator. Evidence is presented to indicate that when the cotyledons from 48-h-grown peas are oxidising pyruvate, acetylcarnitine formed in the mitochondrial matrix by the action of matrix carnitine acetyltransferase may be transported to extra-mitochondrial sites via the membrane translocator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号