首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the effect of irrigation with raw or diluted municipal sewage effluent accompanied by foliar micronutrient fertilizer sprays was examined on the growth, dry matter accumulation, grain yield, and mineral nutrients in foxtail millet plants. The experimental design was a split plot with three irrigation sources: raw sewage, 50% diluted sewage, and well water comprising the main treatments, and four combinations of Mn and Zn foliar sprays as sub-treatments that were applied with four replications. The experiment was conducted in 2009 at the Zabol University research farm in Zabol, south Iran. The applied municipal sewage effluent contained higher levels of micronutrients and macronutrients and exhibited greater degrees of electrical conductivity compared to well water. Because of the small scale of industrial activities in Zabol, the amount of heavy metals in the sewage was negligible (below the limits set for irrigation water in agricultural lands); these contaminants would not be severely detrimental to crop growth. The experimental results indicated that irrigation of plants with raw or diluted sewage stimulates the measured growth and productivity parameters of foxtail millet plants. The concentrations of micronutrients and macronutrients were also positively affected. These stimulations were attributed to the presence of high levels of such essential nutrients as N, P, and organic matter in wastewater. Supplied in sewage water alone, Mn and Zn were not able to raise the productivity of millet to the level obtained using fertilizers at the recommended values; this by itself indicated that additional nutrients from fertilizers are required to obtain higher levels of millet productivity with sewage farming. Despite the differences in nutrient concentrations among the different irrigation water sources, the micronutrient foliar sprays did not affect the concentrations of micronutrients and macronutrients in foxtail millet plants. These results suggested that municipal sewage effluent could be utilized efficiently as an important source of water, and that the nutrients used in growing foxtail millet with sewage water irrigation did not have any significant harmful effect on crop productivity. In contrast, the nutrients proved beneficial to soil fertility and millet productivity and quality.  相似文献   

2.
Every day, pulp and paper mills in the USA discharge millions of liters of wastewater. Primary and secondary treatment of this wastewater often enriches it with phosphorus, resulting in uncontrolled eutrophication of receiving water bodies. A new method of tertiary wastewater treatment uses controlled growth of algae in a photobioreactor to sequester phosphorus into algal biomass, which is then harvested. This typically requires addition of a nitrogen fertilizer (nitrate, ammonium, or urea) to the water. We show on the laboratory scale that chitin can be used as an alternative source of nitrogen for the tertiary treatment of pulp mill wastewater using algae. We demonstrate that phosphorus can be efficiently removed from pulp wastewater using algae and chitin. Furthermore, phosphorus removal with chitin did not result in an increase in dissolved nitrogen in the wastewater because it is insoluble, unlike conventional nitrogen fertilizers. Despite its insolubility, it has recently been found that many diverse algae and cyanobacteria can use it as a source of nitrogen. Chitin has many advantages over conventional nitrogen fertilizers for use in wastewater treatment technologies. It is the second-most abundant natural polymer and is a waste product of the shellfish industry. Chitin is sustainable, inexpensive, and carbon neutral. Thus, chitin improves the sustainability and carbon footprints associated with water treatment, while the production of commercially attractive algal biomass helps to offset costs associated with the water treatment system itself.  相似文献   

3.
The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerprints and technological data were subjected to the canonical correspondence and correlation analyses. The number of separated biological processes realized in the treatment line and the presence of industrial wastewater in the influent were the key factors determining the species structure of total and ammonia-oxidizing bacteria in biomass. The N2O-reducers community composition depended significantly on the design of the facility; the highest species richness of denitrifiers was noted in the WWTPs with separated denitrification tanks. The contribution of industrial streams to the inflow affected the diversity of total and denitrifying bacterial consortia and diminished the diversity of ammonia oxidizers. The obtained data are valuable for engineers since they revealed the main factors, including the design of wastewater treatment plant, influencing the microbial groups critical for the stability of purification processes.  相似文献   

4.
The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.  相似文献   

5.
Influents, effluents and sludges from sewage purification plants and surface water samples were examined quantitatively for Aeromonas hydrophila on the mA medium of Rippey and Cabelli. Between 10(4) and 10(6)/ml A. hydrophila were found in domestic wastewaters. On the average 99.975% were removed by activated sludge and 98.25% by trickling filters. Only 20.9% of A. hydrophila end up in the primary sludge, which contained up to 10(7)/g dry sludge. After 3 months, anaerobically (methane) fermented and partially dried sludge from trickling filters contained more than 10(6) A. hydrophila/g dry sludge. Surface water receiving raw sewage contained several hundreds of A. hydrophila/ml, comparable with the numbers found in effluent waters, while surface receiving no municipal wastewater and destined for the preparation of drinking water contained only small and negligible numbers. It was concluded that A. hydrophila was omnipresent in surface water.  相似文献   

6.
By using a hydroponic culture system, the terrestrial fiber crop ramie can growth optimally in aquatic environment and enhance exponentially quantities of high quality seedlings for subsequent field cultivation. In this study, the survival rate of ramie seedling was more than 97% when cultured using the novel hydroponic method. Further physiological analysis of the hydroponic ramie to different concentration of livestock wastewater demonstrated that all of these ramies can survival in livestock wastewater, but the 4 times diluted livestock wastewater (total N: 100.9 mg L?1, total P: 2.69 mg L?1) was more appropriate for ramie growth. The nutrients N and P in livestock wastewater were significantly decreased by the growth of ramie, and the removal efficiency of total N and total P in the 4 times diluted livestock wastewater achieved 78.1% and 43.1% respectively within 5 weeks. In conclusion, our studies highlight that the combination of ramie and the hydroponic technology resulted to be effective in the phytoremediation of livestock wastewater.  相似文献   

7.
The concentration of faecal contamination test-germs in wastewater has been determined at the entrance and the exit of three purification plants. Investigation for salmonella in the affluents and effluents of the three treatment plants proved that the systems of purification do not permit complete elimination of pathogenic bacteria from wastewaters. Helmith eggs has been observed in raw and treated wastewaters. Compared to the biological intensive systems, the lagoon treatment is susceptible to produce effluent with the best bacteriological and parasitical quality.  相似文献   

8.
Phytoremediation is an emerging technology applied for treatment of wastewater. It is a suitable option notably in developing countries as it is simple, sustainable and cost effective. In the present lab-based batch study the free floating aquatic plant water lettuce (Pistia stratiotes) is used for treatment of parboiled rice mill wastewater having low pH, high chemical oxygen demand (COD), nitrogen, and phosphate. In raw rice mill wastewater (undiluted) growth of water lettuce is found to be inhibited. Later on, two different dilution approaches (raw and facultative pond effluent 1:1; raw and tap water 1:1) are applied in order to effectively use this technology. In all cases a control (without plant) is maintained to compare the performance with the Aquatic Plant based Treatment (APT) system. In the APT system results reveal that removal of soluble COD (SCOD), ammoniacal nitrogen (NH4-N), nitrate nitrogen (NO3-N), and soluble phosphorus (sol. P) are upto 65%, 98%, 70%, and 65% respectively. The study highlights the efficacy of water lettuce in removing organics and nutrients from parboiled rice mill wastewater.  相似文献   

9.
Virological examination of drinking water: a Canadian collaborative study   总被引:2,自引:0,他引:2  
A collaborative virological survey of drinking water was initiated in three major Canadian urban areas, Montreal, Ottawa, and Toronto. In each selected area, three water purification plants were sampled monthly for up to 18 months. The total population served by all nine plants was about 1 500 000. Samples of raw (100 L) and treated (1000 L) water were examined by virus concentration procedures based on adsorption-elution. Sample concentrates were assayed for cytopathic viruses on BS-C-1 cells and the results were expressed as the most probable number of cytopathic units (MPNCU). Viruses were detected in 57% (0-15.35 MPNCU/L) of the raw water samples from Montreal, 37% (0-46.0 MPNCU/L) in Ottawa, and 33% (0-4.91 MPNCU/L) in Toronto. The majority of isolates were reoviruses, but picornaviruses were also found. All finished waters (177 samples) met bacteriological, turbidity, and residual chlorine standards and were free of detectable viruses.  相似文献   

10.
A physico-chemical process has been developed to transform and enhance lignocellulosic waste in liquid humic extracts: humic-like substances (HLS). The aim of this study was to determine the effects of HLS on plant physiology in order to consider their agricultural use as organic fertilizers. The effects of HLS were evaluated on maize seed germination, and their impact on growth, development and mineral nutrition was studied on maize plants cultivated under hydroponic conditions. The experimental results showed that HLS do not increase the percentage and rate of germination but enhance the root elongation of seeds thus treated. Positive effects were also observed on the whole plant growth as well as on root, shoot and leaf biomass. These effects can be related to the high water and mineral consumption of plants undergoing this treatment. The high water efficiency indicated that such plants produce more biomass than non-treated plants for the same consumption of the nutrient solution. Furthermore, the use of HLS induced a flowering precocity and modified root development suggesting a possible interaction of HLS with developmental processes. Considering the beneficial effect of HLS on different stages of plant growth, their use may present various scientific and economic advantages. The physico-chemical transformation of sawdust is an interesting way of enhancing organic waste materials.  相似文献   

11.
Because of high diurnal water quality fluctuations in raw municipal wastewater, the use of proportional autosampling over a period of 24 h at municipal wastewater treatment plants (WWTPs) to evaluate carbon, nitrogen, and phosphorus removal has become a standard in many countries. Microbial removal or load estimation at municipal WWTPs, however, is still based on manually recovered grab samples. The goal of this study was to establish basic knowledge regarding the persistence of standard bacterial fecal indicators and Bacteroidetes genetic microbial source tracking markers in municipal wastewater in order to evaluate their suitability for automated sampling, as the potential lack of persistence is the main argument against such procedures. Raw and secondary treated wastewater of municipal origin from representative and well-characterized biological WWTPs without disinfection (organic carbon and nutrient removal) was investigated in microcosm experiments at 5 and 21°C with a total storage time of 32 h (including a 24-h autosampling component and an 8-h postsampling phase). Vegetative Escherichia coli and enterococci, as well as Clostridium perfringens spores, were selected as indicators for cultivation-based standard enumeration. Molecular analysis focused on total (AllBac) and human-associated genetic Bacteroidetes (BacHum-UCD, HF183 TaqMan) markers by using quantitative PCR, as well as 16S rRNA gene-based next-generation sequencing. The microbial parameters showed high persistence in both raw and treated wastewater at 5°C under the storage conditions used. Surprisingly, and in contrast to results obtained with treated wastewater, persistence of the microbial markers in raw wastewater was also high at 21°C. On the basis of our results, 24-h autosampling procedures with 5°C storage conditions can be recommended for the investigation of fecal indicators or Bacteroidetes genetic markers at municipal WWTPs. Such autosampling procedures will contribute to better understanding and monitoring of municipal WWTPs as sources of fecal pollution in water resources.  相似文献   

12.
选择4种湿地植物菖蒲、香蒲、浮萍和金鱼藻,研究单一及组合湿地植物对高浓度污水(污水处理厂进水)、低浓度污水(污水处理厂出水)中营养物质的去除效果.结果表明: 水体中总氮(TN)、总磷(TP)、化学需氧量(COD)浓度呈现试验前期快速下降,后期缓慢下降的趋势,表明湿地植物能有效净化污水中的TN、TP、COD,但不同湿地植物及湿地植物组合的净化效果存在差异.多种湿地植物组合比单种湿地植物对TN的净化作用强,其中香蒲+浮萍+金鱼藻对TN的净化效果最佳;高浓度污水中,单种挺水植物对TP的净化效果较好,低浓度污水中,则是多种湿地植物组合对TP的去除率较高;高浓度污水中,湿地植物对COD的去除率为85.1%~96.0%,其中菖蒲、香蒲去除效果最佳,低浓度污水中,湿地植物对COD去除率为76.9%~94.8%,以菖蒲+浮萍+金鱼藻去除效果最好.总体看来,湿地植物对高浓度污水中TN、TP、COD的净化效果好于低浓度污水,两种水体的pH都得到改善.  相似文献   

13.
Almost all current genetically modified plant commercial products are derived from seeds. The first protein product made in leaves for commercial use is reported here. Leaf pectinases are validated here with eight liquid commercial microbial enzyme products for textile or juice industry applications. Leaf pectinases are functional in broad pH/temperature ranges as crude leaf extracts, while most commercial enzyme products showed significant loss at alkaline pH or higher temperature, essential for various textile applications. In contrast to commercial liquid enzymes requiring cold storage/transportation, leaf pectinase powder was stored up to 16 months at ambient temperature without loss of enzyme activity. Commercial pectinase products showed much higher enzyme protein PAGE than crude leaf extracts with comparable enzyme activity without protease inhibitors. Natural cotton fibre does not absorb water due to hydrophobic nature of waxes and pectins. After bioscouring with pectinase, measurement of contact‐angle water droplet absorption by the FAMAS videos showed 33 or 63 (leaf pectinase), 61 or 64 (commercial pectinase) milliseconds , well below the 10‐second industry requirements. First marker‐free lettuce plants expressing pectinases were also created by removal of the antibiotic resistance aadA gene. Leaf pectinase powder efficiently clarified orange juice pulp similar to several microbial enzyme products. Commercial pilot scale biomass production of tobacco leaves expressing different pectinases showed that hydroponic growth at Fraunhofer yielded 10 times lower leaf biomass per plant than soil‐grown plants in the greenhouse. Pectinase enzyme yield from the greenhouse plants was double that of Fraunhofer. Thus, this leaf‐production platform offers a novel, low‐cost approach for enzyme production by elimination of fermentation, purification, concentration, formulation and cold chain.  相似文献   

14.
Increasing costs for water, wastewater and energy put pressure on textile finishing plants to increase the efficiency of wet processing. An improved water management can decrease the use of these resources and is a prerequisite for the integration of an efficient, anaerobic on-site pretreatment of effluents that will further cut wastewater costs. A two-phase anaerobic treatment is proposed, and successful laboratory experiments with model effluents from the cotton finishing industry are reported. The chemical oxygen demand of this wastewater was reduced by over 88% at retention times of 1 day or longer. The next step to boost the efficiency is to combine the production and wastewater treatment. The example of cotton fabric desizing (removing size from the fabric) illustrates how this final step of integration uses the acidic phase bioreactor as a part of the production and allows to close the water cycle of the system.  相似文献   

15.
R. POFFÉ AND E. OP DE BEECK. 1991. Influents, effluents and sludges from sewage purification plants and surface water samples were examined quantitatively for Aeromonas hydrophila on the mA medium of Rippey and Cabelli. Between 104 and 106/ml A. hydrophila were found in domestic wastewaters. On the average 99.975% were removed by activated sludge and 98.25% by trickling filters. Only 20.9% of A. hydrophila end up in the primary sludge, which contained up to 107/g dry sludge. After 3 months, anaerobically (methane) fermented and partially dried sludge from trickling filters contained more than 106 A. hydrophila /g dry sludge. Surface water receiving raw sewage contained several hundreds of A. hydrophila /ml, comparable with the numbers found in effluent waters, while surface water receiving no municipal wastewater and destined for the preparation of drinking water contained only small and negligible numbers. It was concluded that A. hydrophila was omnipresent in surface water.  相似文献   

16.
Plant tissue culture technology is being widely used for large-scale, rapid, clonal multiplication and genetic transformation in cassava. The main limitation of this technology is the period of acclimation of the fragile in vitro plants after they have been multiplied or regenerated. Most losses of in vitro plants occur when the plantlets are moved directly from the test tubes to the ex vitro conditions. Our aim was to design a simple, rapid, low-maintenance hydroponic system to improve survival rate of transplanting to the ex vitro conditions through the rapid acclimation process of in vitro plants. In this paper, we have developed a simple hydroponic system to accelerate the cassava acclimation and multiplication process. This system considerably increased the survival percentage of in vitro and/or transgenic lines and reduces the time requirement for multiplication by hydroponic acclimation. In order to assess the effectiveness of the acclimation of seedlings on their establishment, we analyzed plant growth and field survival rate with response to different nitrogen (N) sources using different cassava accessions. Nitrogen sources of NO3 ? and NH4NO3 increased plant growth and root length compared to NH4 + alone, or water treatments. The greenhouse and field survivability of N-hardened plants, including transgenic lines, were significantly different in growth and development. We present a simple NO3 ? hydroponic acclimation system that can be quickly and cheaply constructed and used by the cassava community around the world. The efficiency of our proposed N hydroponic acclimation system is validated in the transgenic development pipeline which will enhance the cassava molecular breeding.  相似文献   

17.
Irradiation of wastewater by low intensity electromagnetic radiation (ν = 42.25 GHz) affects the integral toxicity of water of a different purification degree, which was revealed by an express method on the basis of the Ecolum-08 bacterial luminescent test system. We have shown that the lower the degree of water purification, the higher the toxicity effect of EMR. This allows us to propose the Ecolum bacterial luminescent test system for the primary testing of the effect of EMR.  相似文献   

18.
人工湿地污水处理的应用现状及前景展望   总被引:8,自引:0,他引:8  
杨琼  陈章和 《生态科学》2002,21(4):357-360
本文分析了人工湿地系统在污水处理中的作用,叙述了人工湿地在发展中国家的应用现状及所取得的效果。人工湿地的特点适合我国国情,特别适合广大农村、中小城市的污水处理,在我国具有极其广阔的应用前景。对湿地用于污水处理方面的不足,如缺乏污水对植物影响的研究(特别是对乡土植物的研究)、缺乏对重要工艺的理解、人工湿地占地面积大等也进行了分析。  相似文献   

19.
Diethylene glycol (DEG) is one of several diols used as a raw material in the production of plasticizers and polyester resins. It has been associated with a number of mass poisonings in several countries. Conventional methods of remediation of DEG contaminated wastewaters are still not very effective. This paper presents an alternative method for remediation of DEG-contaminated waters using the plant Echinodorus cordifolius. The effects of DEG on E. cordifolius were studied along with the plant's efficiency at treating DEG-contaminated wastewater in a constructed wetland. We found that DEG was toxic to the plants with an LD50 of 6238 mg L(-1). The plants exhibited decreased water uptake and showed wilting, chlorosis and necrosis. SEM images showed injury to the cortex tissue. In the constructed wetland, E. cordifolius plants were able to remove and degrade DEG from wastewater, decreasing the pH from 12 to 6.8 and the COD and TDS by approximately 98% and 67%, respectively, in 7 days, while accumulating Ca in the cells.  相似文献   

20.
Semipermeable membrane system for subjecting plants to water stress   总被引:2,自引:1,他引:1       下载免费PDF全文
A system was evaluated for growing plants at reproducible levels of water stress. Beans (Phaseolus vulgaris L.) were grown in vermiculite, transferred to a semipermeable membrane system that encased the root-vermiculite mass, and then placed into nutrient solutions to which various amounts of polyethylene glycol (PEG) 20M were added to control solution water potential. The membrane (Spectrapor 1) had a minimum molecular weight cutoff that excluded the PEG 20M. The plants equilibrated with the nutrient solution within 1 to 4 days, and exhibited normal diurnal water relations. Use of the semipermeable membrane system to induce water stress reduces many of the problems associated with hydroponic media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号