首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although various intrinsic and extrinsic risk factors for anterior cruciate ligament (ACL) rupture have been identified, the exact aetiology of the injury is not yet fully understood. Type III collagen is an important factor in the repair of connective tissue, and certain gene polymorphisms may impair the tensile strength. The aim of this study was to examine the association of the COL3A1 rs1800255 polymorphism with ACL rupture in Polish male recreational skiers. A total of 321 male Polish recreational skiers were recruited for this study; 138 had surgically diagnosed primary ACL ruptures (ACL-injured group) and 183 were apparently healthy male skiers (control group – CON) who had no self-reported history of ligament or tendon injury. Both groups had a comparable level of exposure to ACL injury. Genomic DNA was extracted from the oral epithelial cells. All samples were genotyped on a real-time polymerase chain reaction instrument. The genotype distribution in the ACL-injured group was significantly different than in CON (respectively: AA=10.1 vs 2.2%, AG=22.5 vs 36.1, GG=67.4 vs 61.8%; p=0.0087). The AA vs AG+GG genotype of COL3A1 (odds ratio (OR)=5.05; 95% confidence interval (CI), 1.62-15.71, p=0.003) was significantly overrepresented in the ACL-injured group compared with CON. The frequency of the A allele was higher in the ACL-injured group (21.4%) compared with CON (20.2%), but the difference was not statistically significant (p=0.72). This study revealed an association between the COL3A1 rs1800255 polymorphism and ACL ruptures in Polish skiers.  相似文献   

2.
Female athletes participating in high-risk sports suffer anterior cruciate ligament (ACL) knee injury at a 4- to 6-fold greater rate than do male athletes. ACL injuries result either from contact mechanisms or from certain unexplained non-contact mechanisms occurring during daily professional sports activities. The occurrence of non-contact injuries points to the existence of certain factors intrinsic to the knee that can lead to ACL rupture. When knee joint movement overcomes the static and the dynamic constraint systems, non-contact ACL injury may occur. Certain recent results suggest that balance and neuromuscular control play a central role in knee joint stability, protection and prevention of ACL injuries. The purpose of this study is to evaluate balance neuromuscular skills in healthy Croatian female athletes by measuring their balance index score, as well as to estimate a possible correlation between their balance index score and balance effectiveness. This study is conducted in an effort to reduce the risk of future injuries and thus prevent female athletes from withdrawing from sports prematurely. We analysed fifty-two female athletes in the high-risk sports of handball and volleyball, measuring for their static and dynamic balance index scores, using the Sport KAT 2000 testing system. This method may be used to monitor balance and coordination systems and may help to develop simpler measurements of neuromuscular control, which can be used to estimate risk predictors in athletes who withdraw from sports due to lower sports results or ruptured anterior cruciate ligament and to direct female athletes to more effective, targeted preventive interventions. The tested Croatian female athletes with lower sports results and ACL knee injury incurred after the testing were found to have a higher balance index score compared to healthy athletes. We therefore suggest that a higher balance index score can be used as an effective risk predictor for lower sports results and lesser sports motivation, anterior cruciate ligament injury and the ultimate decision to withdraw from active participation in sports. If the balance testing results prove to be effective in predicting the occurrence of ligament injuries during future sports activities, we suggest that prophylactic training programs be introduced during athlete training, since the prevention of an initial injury will be more effective than prevention of injury recurrence.  相似文献   

3.
为了探讨凋亡酶的半胱天冬酶3 (Caspase 3)、促炎细胞因子interleukin-1β(IL-1β)、白细胞介素-6(IL-6)和基质金属蛋白酶降解酶-13 (MMP-13)的表达水平,来说明前交叉韧带(anterior cruciate ligament,ACL)损伤后软骨细胞的软骨变性和骨性关节炎的发展情况,本研究通过探讨软骨降解程度与损伤时间或患者年龄之间的关系,应用实时聚合酶链反应检测正常人(n=5)和ACL破裂患者(n=42)软骨细胞中IL-1β、IL-6和MMP-13 mRNA的表达水平,采用Western blotting检测MMP-13和Caspase 3蛋白表达水平。通过趋势分析和相关系数分析,分别得出MMP-13、IL-6、IL-1β基因表达与软骨缺损分级,MMP-13、IL-6、IL-1β基因表达与患者年龄的关系。结果表明,软骨降解程度与损伤时间之间存在相关性。与正常相比,ACL损伤的软骨细胞中,MMP-13、IL-6、IL-1β和Caspase 3的表达水平有显著上调。在ACL缺陷患者中,与ACL缺陷未到18个月的患者相比,在超过18个月的患者中发现MMP-13明显上调,而超过10月的患者软骨细胞中IL-6和IL-1β表达水平要高于未到10个月的ACL缺陷患者。同时,IL-1β、IL-6和MMP-13表达水平和软骨损伤或病人的年龄之间没有关联。研究发现,软骨细胞凋亡、炎症和分解代谢因子水平的升高与损伤时间有关,并可能导致ACL损伤后软骨退变和骨性关节炎的发生。  相似文献   

4.
5.
Anterior cruciate ligament (ACL) injuries are one of the most common and potentially debilitating sports injuries. Approximately 70% of ACL injuries occur without contact and are believed to be preventable. Jump stop movements are associated with many non-contact ACL injuries. It was hypothesized that an athlete performing a jump stop movement can reduce their peak tibial shear force (PTSF), a measure of ACL loading, without compromising performance, by modifying their knee flexion angle, shank angle, and foot contact location during landing. PTSF was calculated for fourteen female basketball players performing jump stops using their normal mechanics and mechanics modified to increase their knee flexion angle, decrease their shank angle relative to vertical and land more on their toes during landing. Every subject tested experienced drastic reductions in their PTSF (average reduction=56.4%) using modified movement mechanics. The athletes maintained or improved their jump height with the modified movement mechanics (an average increase in jump height of 2.5 cm). The hypothesis was supported: modifications to jump stop movement mechanics greatly reduced PTSF and therefore ACL loading without compromising performance. The results from this study identify crucial biomechanical quantities that athletes can easily modify to reduce ACL loading and therefore should be targeted in any physical activity training programs designed to reduce non-contact ACL injuries.  相似文献   

6.
Considering that an athlete performs at-risk sports activities countless times throughout the course of his or her career prior to the instance of anterior cruciate ligament (ACL) injury, one may conclude that non-contact ACL injury is a rare event. Nevertheless, the overall number of non-contact ACL injuries, both in the US and worldwide, remains alarming due to the growing number of recreational and professional athletes participating in high-risk activities. To date, numerous non-contact ACL injury mechanisms have been proposed, but none provides a detailed picture of sequence of events leading to injury and the exact cause of this injury remains elusive. In this perspective article, we propose a new conception of non-contact ACL injury mechanism that comprehensively integrates risk factors inside and outside the knee joint. The proposed mechanism is robust in the sense that it is biomechanically justifiable and addresses a number of confounding issues related to ACL injury.  相似文献   

7.
The pathogenesis of HIV-associated neurocognitive disorder (HAND) is modulated by host genetic susceptibility factors such as Matrix metalloproteinases (MMPs). Promoter polymorphism of MMP-1 and MMP-3 may modify the expression of the gene. Hence, we evaluated the association of MMP-1-16072G/1G and MMP-3-1612 5A/6A polymorphisms with development of HAND and the modulation of pathogenesis of HAND. We enrolled a total of 180 individuals, 50 HIV-infected individuals with HAND, 130 without HAND, and 150 healthy controls. Polymorphism of MMP-1 and MMP-3 were genotyped by PCR-RFLP. MMP-1-1607 2G1G, -16071G/2G-1G/1G genotypes and -1607 1G allele were associated with the development of HAND (OR = 1.64, P = 0.05; OR = 1.45, P = 0.04; OR = 1.69, P = 0.05). MMP-1-16071G1G, MMP-3-16125A5A genotypes increased the risk for the development of HAND (OR = 1.78, P = 0.25; OR = 2.39, P = 0.13). MMP-3-1612 5A5A, -1612 6A/5A-5A/5A genotypes and -1612 5A allele were associated with the reduced risk of HAND (OR = 0.40, P = 0.05; OR = 0.53, P = 0.04; OR = 0.40, P = 0.01). Haplotype 5A1G increased the risk of development of HAND (OR = 1.93, P = 0.05). As observed in advanced HIV disease stage, MMP-1-1607 1G1G genotype enhance the risk for advancement of HIV disease (OR = 1.69, P = 0.89). MMP-3-1612 6A5A genotype showed higher risk for development of HAND in alcohol users (0R = 1.65, P = 0.44). MMP-1 genotype may have an influence on development of HAND whereas MMP3-1612 5A5A genotype may reduce risk for pathogenesis of HAND.  相似文献   

8.
BACKGROUND: The quadrupled autologous semitendinosus-gracilis graft is the first choice of many orthopaedic surgeons when reconstructing the anterior cruciate ligament. The effect that this procedure has on voluntary muscle control remains unclear. The purpose of this study was to evaluate the effect that anterior cruciate ligament reconstruction with autologous semitendinosus-gracilis graft has on voluntary muscle control by assessing subjects' specificity of muscle action. METHODS: The voluntary muscle control of 10 people (seven males, three females) with acute, isolated ACL ruptures was assessed in the days prior to when they underwent anterior cruciate ligament reconstruction with quadrupled autologous semitendinosus-gracilis grafts and after they had returned to play in sports requiring quick changes of direction and jumping (approximately 6 months later). The experimental protocol included the use of an established target-matching protocol that requires subjects to produce and modulate force with fine control, electromyographic recordings from 11 muscles about the knee, and the use of circular statistics to calculate specificity indices that describe the degree of focus (specificity) associated with the activity pattern of each muscle. Data were analyzed by performing pre-surgery and post-return to sports side-to-side comparisons, as well as, pre-surgery to post-surgery ipsilateral comparisons. RESULTS: Diminished specificity of muscle action was observed in the activity patterns of most of the muscles of the subjects' anterior cruciate ligament deficient knees prior to surgery. The quadriceps muscles were particularly affected. Post-return to sports results indicated that voluntary muscle control had improved in most muscles. There was no significant difference in pre-surgery and post-return to sports semitendinosus and gracilis muscle control. The semimembranosus muscle displayed less specific muscle activity patterns following surgery, which may represent a compensation strategy for minor changes in neuromuscular function. CONCLUSIONS: Voluntary muscle control improved in most muscles following ACL reconstruction with semitendinosus-gracilis autografts. Semitendinosus and gracilis muscle control did not appear to be altered significantly by the procedure.  相似文献   

9.
目的:评估关节镜下膝关节前交叉韧带(ACL)与后交叉韧带(PCL)同时重建的技术和临床效果。方法:自2003年6月~2009年10月,27例病人(28膝)经MRJ检查及关节镜检查证实ACL和PCL均断裂,其中9膝伴内侧副韧带损伤(MCL),8膝伴后外侧角损伤(PLC),5膝伴内侧半月板破裂,4膝伴外侧半月板损伤。27例患者于伤后3~10周在关节镜下行膝关节前、后交叉韧带联合重建。结果:本组术后早期均未发生严重并发症。术后随访12-88个月,平均(42.67±3.34)个月,Lysholm膝关节功能评分为78-93分,平均(86.67±5.21)分。国际膝关节文件编制委员会(mDC)综合评定由术前显著异常(D级)28膝,改进为随访时正常(A级)9膝、接近正常(B级)16膝、异常(C级)3膝。结论:关节镜下膝关节前交叉韧带(ACL)与后交叉韧带(PCL)同时重建创伤小、手术操作精细,术后膝关节功能恢复满意。  相似文献   

10.
目的:评估关节镜下膝关节前交叉韧带(ACL)与后交叉韧带(PCL)同时重建的技术和临床效果。方法:自2003年6月~2009年10月,27例病人(28膝)经MRI检查及关节镜检查证实ACL和PCL均断裂,其中9膝伴内侧副韧带损伤(MCL),8膝伴后外侧角损伤(PLC),5膝伴内侧半月板破裂,4膝伴外侧半月板损伤。27例患者于伤后3~10周在关节镜下行膝关节前、后交叉韧带联合重建。结果:本组术后早期均未发生严重并发症。术后随访12~88个月,平均(42.67±3.34)个月,Lysholm膝关节功能评分为78~93分,平均(86.67±5.21)分。国际膝关节文件编制委员会(IKDC)综合评定由术前显著异常(D级)28膝,改进为随访时正常(A级)9膝、接近正常(B级)16膝、异常(C级)3膝。结论:关节镜下膝关节前交叉韧带(ACL)与后交叉韧带(PCL)同时重建创伤小、手术操作精细,术后膝关节功能恢复满意。  相似文献   

11.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

12.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

13.

Objectives

The aim of this study was to examine the association of +1245G/T polymorphisms in the COL1A1 gene with ACL ruptures in Polish male recreational skiers in a case-control study.

Methods

A total of 138 male recreational skiers with surgically diagnosed primary ACL ruptures, all of whom qualified for ligament reconstruction, were recruited for this study. The control group comprised 183 apparently healthy male skiers with a comparable level of exposure to ACL injury, none of whom had any self-reported history of ligament or tendon injury. DNA samples extracted from the oral epithelial cells were genotyped for the +1245G/T polymorphisms using real-time PCR method.

Results

Genotype distributions among cases and controls conformed to Hardy-Weinberg equilibrium (p = 0.2469 and p = 0.33, respectively). There was a significant difference in the genotype distribution between skiers and controls (p = 0.045, Fisher''s exact test). There was no statistical difference in allele distribution: OR 1.43 (0.91-2.25), p = 0.101 (two-sided Fisher''s exact test).

Conclusions

The risk of ACL ruptures was around 1.43 times lower in carriers of a minor allele G as compared to carriers of the allele T.  相似文献   

14.
Anterior cruciate ligament (ACL) injury risk is likely increased under unexpected loading conditions. Such situations may arise from mid-air contact with another athlete, or misjudgments in landing height, stride length or surface compliance resulting in an unbalanced landing and unexpected changes in the ground reaction forces (GRFs). The purpose this study was to identify how GRF perturbations influence ACL loading during sidestep cutting. Muscle-actuated simulations of sidestep cutting were generated and analyzed for 20 subjects. Perturbations of 20, 40 and 60% of the nominal value were applied to the posterior, vertical, and medial GRF. Open-loop, forward dynamics simulations were run with no feedback or correction mechanism which allowed deviations from the experimentally measured kinematics as a result of the GRF perturbations. Posterior and vertical GRF perturbations significantly increased ACL loading, although the change was more pronounced with posterior perturbations. These changes were primarily due to the sagittal plane component of ACL loading regardless of perturbation direction. Peak ACL loading occurred almost immediately after initial ground contact, and was thus predicated on initial joint configuration. The results of this study give merit to including knee flexion angle at initial ground contact in the evolving neuromuscular training modalities aimed at preventing non-contact ACL injury.  相似文献   

15.
Results of the surgical reconstruction of the anterior cruciate ligament (ACL), using as a graft fourfold hamstring tendons (gracilis and semitendinosus) and middle third of the patellar ligament, were compared. In all patients that were participating in this study clinical examination and magnetic resonance showed ACL rupture, and apart from the choice of the graft, surgical technique was identical. We evaluated 112 patients with implemented patellar ligament graft and fourfold hamstring tendons graft six months after the procedure. Both groups were similar according to age, sex, activity level, knee instability level and rehabilitation program. The results showed that there was no significant difference between groups regarding Lysholm Knee score, IKDC 2000 score, activity level, musculature hypotrophy, and knee joint stability 6 months after the surgery. Anterior knee pain incidence is significantly higher in the group with patellar ligament graft (44% vs. 21%). Both groups had a significant musculature hypotrophy of the upper leg of the knee joint that was surgically treated, six months after the procedure. Both grafts showed good subjective and objective results.  相似文献   

16.
Anterior cruciate ligament (ACL) injury is one of the most common serious lower-extremity injuries experienced by athletes participating in field and court sports and often occurs during a sudden change in direction or pivot. Both lateral trunk positioning during cutting and peak external knee abduction moments have been associated with ACL injury risk, though it is not known how core muscle activation influences these variables. In this study, the association between core muscle pre-activation and trunk position as well as the association between core muscle pre-activation and peak knee abduction moment during an unanticipated run-to-cut maneuver were investigated in 46 uninjured individuals. Average co-contraction indices and percent differences between muscle pairs were calculated prior to initial contact for internal obliques, external obliques, and L5 extensors using surface electromyography. Outside tilt of the trunk was defined as positive when the trunk was angled away from the cutting direction. No significant associations were found between pre-activations of core muscles and outside tilt of the trunk. Greater average co-contraction index of the L5 extensors was associated with greater peak knee abduction moment (p=0.0107). Increased co-contraction of the L5 extensors before foot contact could influence peak knee abduction moment by stiffening the spine, limiting sagittal plane trunk flexion (a motion pattern previously linked to ACL injury risk) and upper body kinetic energy absorption by the core during weight acceptance.  相似文献   

17.
The current study describes the development of a small animal, closed-joint model of traumatic anterior cruciate ligament (ACL) and meniscal rupture. This model can be used in future studies to investigate the roles of these acute damages on the long-term health of an injured knee joint. Forty-two Flemish Giant rabbits received an insult to the left tibiofemoral joint ex vivo in order to document optimal energy and joint orientation needed to generate ACL and meniscal rupture, without gross fracture of bone. Impact energies ranged from 10 J to 22 J, and joint flexion angle ranged from 60 deg to 90 deg. Three in vivo animals were impacted at 13 J with the knee flexed at 90 deg, as this was determined to be the optimal load and joint orientation for ACL and meniscal ruptures, and sacrificed at 12 weeks. Impact data from the ex vivo group revealed that 13 J of dropped-mass energy, generating approximately 1100 N of load on the knee, would cause ACL and meniscal ruptures, without gross bone fracture. Acute damage to the lateral and medial menisci was documented in numerous ex vivo specimens, with isolated lateral meniscal tears being more frequent than isolated medial tears in other cases. The in vivo animals showed no signs of ill health or other physical complications. At 12 week post-trauma these animals displayed marked degeneration of the traumatized joint including synovitis, cartilage erosion, and the formation of peripheral osteophytes. Histological microcracks at the calcified cartilage-subchondral bone interface were also evident in histological sections of these animals. A closed-joint model of traumatic ACL and meniscal rupture was produced, without gross bone fracture, and a pilot, in vivo study showed progressive joint degeneration without any other noticeable physical impairments of the animals over 12 weeks. This closed-joint, traumatic injury model may be useful in future experimental studies of joint disease and various intervention strategies.  相似文献   

18.
This study determined which knee joint motions lead to anterior cruciate ligament (ACL) rupture with the knee at 25° of flexion. The knee was subjected to internal and external rotations, as well as varus and valgus motions. A failure locus representing the relationship between these motions and ACL rupture was established using finite element simulations. This study also considered possible concomitant injuries to the tibial articular cartilage prior to ACL injury. The posterolateral bundle of the ACL demonstrated higher rupture susceptibility than the anteromedial bundle. The average varus angular displacement required for ACL failure was 46.6% lower compared to the average valgus angular displacement. Femoral external rotation decreased the frontal plane angle required for ACL failure by 27.5% compared to internal rotation. Tibial articular cartilage damage initiated prior to ACL failure in all valgus simulations. The results from this investigation agreed well with other experimental and analytical investigations. This study provides a greater understanding of the various knee joint motion combinations leading to ACL injury and articular cartilage damage.  相似文献   

19.
The adult human anterior cruciate ligament (ACL) has a poor functional healing response, whereas the medial collateral ligament (MCL) does not. The difference in intrinsic properties of these ligament cells can be due to their different response to their located microenvironment. Hypoxia is a key environmental regulator after ligament injury. In this study, we investigated the differential response of ACL and MCL fibroblasts to hypoxia on hypoxia-inducible factor-1α, vascular endothelial growth factor, and matrix metalloproteinase-2 (MMP-2) expression. Our results show that ACL cells responded to hypoxia by up-regulating the HIF-1α expression significantly as compared to MCL cells. We also observed that in MCL fibroblasts response to hypoxia resulted in increase in expression of VEGF as compared to ACL fibroblasts. After hypoxia treatment, mRNA and protein levels of MMP-2 increased in both ACL and MCL. Furthermore we found in ACL pro-MMP-2 was converted more into active form. However, hypoxia decreased the percentage of wound closure for both ligament cells and had a greater effect on ACL fibroblasts. These results demonstrate that ACL and MCL fibroblasts respond differently under the hypoxic conditions suggesting that these differences in intrinsic properties may contribute to their different healing responses and abilities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号