首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bunce JA 《Annals of botany》2002,90(3):399-403
Studies have indicated that the concentration of carbon dioxide [CO2] during the dark period may influence plant dry matter accumulation. It is often suggested that these effects on growth result from effects of [CO2] on rates of respiration, but responses of respiration to [CO2] remain controversial, and connections between changes in respiration rate and altered growth rate have not always been clear. The present experiments tested whether translocation, a major consumer of energy from respiration in exporting leaves, was sensitive to [CO2]. Nineteen-day-old soybean plants grown initially at a constant [CO2] of 350 micromol mol(-1) were exposed to three consecutive nights with a [CO2] of 220-1400 micromol mol(-1), with a daytime [CO2] of 350 micromol mol(-1). Change in dry mass of the individual second, third and fourth trifoliate leaves over the 3-d period was determined, along with rates of respiration and photosynthesis of second leaves, measured by net CO2 exchange. Translocation was determined from mass balance for second leaves. Additional experiments were conducted where the [CO2] around individual leaves was controlled separately from that of the rest of the plant. Results indicated that low [CO2] at night increased both respiration and translocation and elevated [CO2] decreased both processes, to similar relative extents. The effect of [CO2] during the dark on the change in leaf mass over 3 d was largest in second leaves, where the change in mass was about 50% greater at 1400 micromol mol(-1) CO2 than at 220 micromol mol(-1) CO2. The response of translocation to [CO2] was localized in individual leaves. Results indicated that effects of [CO2] on net carbon dioxide exchange rate in the dark either caused or reflected a change in a physiologically important process which is known to depend on energy supplied by respiration. Thus, it is unlikely that the observed effects of [CO2] on respiration were artefacts of the measurement process in this case.  相似文献   

3.
Summary CO2 fixation characteristics of a number of mature (but not senescing) tissues and organs (the outer layers of green pod and the seed testa of Vicia faba L.; the outer layers of green pod and seeds of Trigonella foenum-graecum L.; the outer layers of the green fruit of Lycopersicon esculentum Mill.) were studied and compared with their respective C3 leaf characteristics. On a chlorophyll basis phosphoenolpyruvate carboxylase, malic enzyme (NADP) and malate dehydrogenase (NAD and NADP) acitivites were much higher in the non-leaf tissues (except for V. faba seed testa) than the leaf tissues. Generally, on a protein basis the differences were less significant. All tissues possessed ribulose-1.5-diphosphate carboxylase activity though there was great variation in activities both on a protein and chlorophyll basis. Protein: chlorophyll ratios varied greatly from tissue to tissue being lowest in the leaf tissue (11.5–14.0) and highest in V. faba seed testa (805.5). Chlorophyll a:b ratios were all between 2 and 3. 14CO2 uptake in the dark by L. esculentum fruit slices was about 1/3 that in the light and the major, initially labelled product was malate both in the light and dark. Neither typical C4-photosynthesis or crassulacean acid metabolism were exhibited by the non-leaf tissues and it was considered that the increased levels of certain enzyme activities were present to refix and recycle respired CO2.Abbreviations PEP phosphoenolpyruvate - RuDP ribulose -1,5-, diphosphate - MDH malate dehydrogenase - CAM Crassulacean acid metabolism - OAA oxaloacetic acid  相似文献   

4.
Net photosynthetic rate decreased sharply to zero in the range of water potential- 8.0 to -10.4 x 105 Pa. The observed decrease in photosynthetic rate was due not only to the decrease in epidermal conductance, but also to the decrease in intraoellular conductance. Both conductances decreased in the same range of water potential. With decreasing water potential photorespiration rate decreased whereas dark respiration rate remained rather unchanged. Simultaneously CO2 compensation concentration increased. These facts constitute an indirect evidence that water stress inhibited not only transport of CO2 from atmosphere to carboxylation sites in chloroplasts, but also its conversion into photosynthates.  相似文献   

5.
Plants use inducible defence mechanisms to fend off harmful organisms. Resistance that is induced in response to local attack is often expressed systemically, that is, in organs that are not yet damaged. In the search for translocated defence signals, biochemical studies follow the physical movement of putative signals, and grafting experiments use mutants that are impaired in the production or perception of these signals. Long-distance signals can directly activate defence or can prime for the stronger and faster induction of defence. Historically, research has focused on the vascular transport of signalling metabolites, but volatiles can play a crucial role as well. We compare the advantages and constraints of vascular and airborne signals for the plant, and discuss how they can act in synergy to achieve optimised resistance in distal plant parts.  相似文献   

6.
Phospholipid signalling in plant defence   总被引:11,自引:0,他引:11  
Phospholipid-derived molecules are emerging as novel second messengers in plant defence signalling. Recent research has begun to reveal the signals produced by the enzymes phospholipase C, phospholipase D and phospholipase A2 and their putative downstream targets. These include the activation of a MAP kinase cascade and triggering of an oxidative burst by phosphatidic acid; the regulation of ion channels and proton pumps by lysophospholipids and free fatty acids; and the conversion of free fatty acids into bioactive octadecanoids such as jasmonic acid.  相似文献   

7.
8.
9.
Bravdo B 《Plant physiology》1971,48(5):607-612
The interactions between CO2 and H2O vapor exchange of the leaf and respirant organs like stems were studied in tobacco plants. The results were analyzed according to a suggested model. Good agreement between open and closed system measurements supported the validity of the model.  相似文献   

10.
11.
12.
The establishment of the apical-basal axis is a critical event in plant embryogenesis, evident from the earliest stages onwards. Polarity is evident in the embryo sac, egg cell, zygote, and embryo-suspensor complex. In the embryo-proper, two functionally distinct meristems form at each pole, through the localized expression of key genes. A number of mutants, notably of the model genetic organism Arabidopsis thaliana, have revealed new gene functions that are required for patterning of the apical-basal axis. There is now increasing evidence that two particular modes of signalling, via auxin and cell wall components, play important roles in co-ordinating the gene expression programmes that define determinative roles in the establishment of polarity.  相似文献   

13.
Effects of atmospheric carbon dioxide enrichment on nitrogen metabolism were studied in barley primary leaves (Hordeum vulgare L. cv. Brant). Seedlings were grown in chambers under ambient (36 Pa) and elevated (100 Pa) carbon dioxide and were fertilized daily with complete nutrient solution providing 12 millimolar nitrate and 2.5 millimolar ammonium. Foliar nitrate and ammonium were 27% and 42% lower (P ≤ 0.01) in the elevated compared to ambient carbon dioxide treatments, respectively. Enhanced carbon dioxide affected leaf ammonium levels by inhibiting photorespiration. Diurnal variations of total nitrate were not observed in either treatment. Total and Mg2+inhibited nitrate reductase activities per gram fresh weight were slightly lower (P ≤ 0.01) in enhanced compared to ambient carbon dioxide between 8 and 15 DAS. Diurnal variations of total nitrate reductase activity in barley primary leaves were similar in either treatment except between 7 and 10 h of the photoperiod when enzyme activities were decreased (P ≤ 0.05) by carbon dioxide enrichment. Glutamate was similar and glutamine levels were increased by carbon dioxide enrichment between 8 and 13 DAS. However, both glutamate and glutamine were negatively impacted by elevated carbon dioxide when leaf yellowing was observed 15 and 17 DAS. The above findings showed that carbon dioxide enrichment produced only slight modifications in leaf nitrogen metabolism and that the chlorosis of barley primary leaves observed under enhanced carbon dioxide was probably not attributable to a nutritionally induced nitrogen limitation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Lilley RM  Walker DA 《Plant physiology》1975,55(6):1087-1092
The relationship between rate of photosynthesis and CO(2) concentration has been reinvestigated using isolated spinach (Spinacia oleracea) chloroplasts. The apparently low CO(2) concentration required for half-maximal photosynthesis is shown to result partly from a ceiling imposed by electron transport. In double reciprocal plots of rate against CO(2) concentration, this ceiling results in departures from linearity at high CO(2) concentrations. If these rate limitations are disregarded in extrapolation the "true" CO(2) concentration required for half maximal carboxylation by intact chloroplasts is approximately 46 mum (CO(2)).When assayed under comparable conditions, ribulose bisphosphate carboxylase from these chloroplasts also shows an apparent Km (CO(2)) of approximately 46 mum, suggesting that its characteristics are not modified by extraction. An improved assay for ribulose bisphosphate carboxylase yielded rates of carboxylation considerably higher than those previously reported, the highest maximal velocities recorded approaching 1000 mumoles CO(2) fixed mg(-1) chlorophyll hr(-1) at 20 C. With such Km and V(max), values the carboxylase would be able to achieve, at concentrations of CO(2) less than atmospheric, rates of CO(2) fixation equal to those displayed by the parent tissue or by the average plant under favorable conditions in its natural environment.  相似文献   

15.
16.
Animals and plants produce regulatory signals at specific places of their bodies, in order to regulate developmental events which take place at a distance. Plants use this mechanism to adjust their development to the changing environment. Flowering and tuber formation are controlled by signals generated in the leaves that travel throughout the plant to reach their target tissues: the shoot apical meristem for flowering and the underground stolons for tuberization. Although the existence of these long-distance plant messengers was postulated almost seventy years ago, their chemical nature is still not clear. These leaf-derived signals are graft-transmissible and move through the plant vascular system. Presumably they are very similar or even identical for flowering and tuberization and common to most plant species. It is generally accepted that their composition is complex and includes positive and negative regulators. Many different substances, including classical plant hormones and metabolites have been postulated to be components of these mobile signals, but conclusive evidence of this is still lacking. Recent work has positioned these signals within the genetic network that regulates flowering time and suggests roles for specific genes in the generation, transport or response to the signalling molecules. Current knowledge of long-range signalling mechanisms in other physiological and developmental events, together with the finding of common regulators involved in flowering, tuberization and other processes like pathogen and wound responses, should help to establish the biochemical composition of these elusive messenger signals.  相似文献   

17.
18.
19.
Carbon metabolite sensing and signalling   总被引:6,自引:0,他引:6  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号